Advertisement

Milan Journal of Mathematics

, Volume 82, Issue 2, pp 407–422 | Cite as

Hodge-type Decomposition for Time-dependent First-order Parabolic Operators with Non-constant Coefficients: The Variable Exponent Case

  • R. S. Kraußhar
  • M. M. Rodrigues
  • N. VieiraEmail author
Article

Abstract

In this paper we present a Hodge-type decomposition for variable exponent spaces. More concretely, we address some time-dependent parabolic firstorder partial differential operators with non-constant coefficients, where one of the components is the kernel of the parabolic-type Dirac operator. This decomposition is presented over different types of domains in the n-dimensional Euclidean space n-dimensional Euclidean space \({\mathbb{R}^{n}}\). The case of the time-dependent Schrödinger operator is included as a special case within this context.

Mathematics Subject Classification

Primary 30G35 Secondary: 35Q41 35A08 46E35 46E30 34L40 

Keywords

Clifford analysis Witt basis parabolic-type Dirac operator timedependent operators Schrödinger equation fundamental solution variable exponent spaces regularization procedure Hodge decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164-No.3, 213–259 (2002)Google Scholar
  2. 2.
    R. Artino and J. Barros-Neto, Hypoelliptic Boundary-Value Problems, Lectures Notes in Pure and Applied Mathematics-Vol.53, Marcel Dekker, New York-Basel, 1980.Google Scholar
  3. 3.
    P. Cerejeiras, U. Kähler, M.M. Rodrigues and N. Vieira, Hodge-type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case, Commun. Pure Appl. Anal., 13-No.6, (2014), 2253–2272Google Scholar
  4. 4.
    P. Cerejeiras and N. Vieira, Regularization of the non-stationary Schrödinger operator, Math. Meth. in Appl. Sc., 32-No.(4), (2009), 535–555Google Scholar
  5. 5.
    Cerejeiras P., Vieira N.: Factorization of the Non-Stationary Schrödinger Operator, Adv. Appl. Clifford Algebr. 17, 331–341 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    P. Cerejeiras, U. Kähler and F. Sommen, Parabolic Dirac operators and the Navier- Stokes equations over time-varying domains, Math.Meth. in Appl. Sc.,28-No.14, (2005), 1715-1724.Google Scholar
  7. 7.
    Y. Chen, S. Levine and R. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66-No.4, (2006), 1383-1406.Google Scholar
  8. 8.
    R. Delanghe, F. Sommen and V. Souc̆ek, Clifford algebras and spinor-valued functions. A function theory for the Dirac operator, Mathematics and its Applications-Vol.53, Kluwer Academic Publishers, Dordrecht etc., 1992.Google Scholar
  9. 9.
    L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolec Spaces with variable Exponents, Springer-Verlang, Berlin, 2011.CrossRefGoogle Scholar
  10. 10.
    L. Diening, D. Lengeler and M. Ružička, The Stokes and Poisson problem in variable exponents spaces, Complex Var. Elliptic Equ., 56-No.7-9, (2011), 789-811.Google Scholar
  11. 11.
    R. Fortini, D. Mugnai and P. Pucci, Maximum principles for anisotropic elliptic inequalities, Nonlinear Anal.,70-No.8, (2009), 2917-2929.Google Scholar
  12. 12.
    K. Gürlebeck and W. Sprößig, Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice, Wiley, Chichester, 1997.Google Scholar
  13. 13.
    R. F. Hoskins and J.S. Pinto, Theories of Generalised Functions - Distributions, Ultradistributions and other Generalised Functions, Horwood Publishing, Chichester, 2005.Google Scholar
  14. 14.
    O. Kováčik and J. Rákosník, On spaces L p(x) and W 1,p(x), Czechoslovak Math. J., 41(116)-No.4, (1991), 592-618.Google Scholar
  15. 15.
    R.S. Kraußhar, M.M. Rodrigues and N. Vieira, Hodge decomposition and solution formulas for some first-order time-dependent parabolic operators with non-constant coefficients,Ann. Mat. Pura Appl., in press, DOI: 10.1007/s10231-013-0357-3.
  16. 16.
    R.S. Kraußhar and N. Vieira, The Schrödinger equation on cylinders and the n-torus, J. Evol. Equ., 11-No.1, (2011), 215-237.Google Scholar
  17. 17.
    Laskin N., Fractional Schrödinger equation. Phys. Rev. E, 66, 056108 (2002)CrossRefMathSciNetGoogle Scholar
  18. 18.
    N. Laskin, Fractional quantum mechanics, Phy. Rev. E, 62-No.3, (2000), 3135-3145.Google Scholar
  19. 19.
    N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 298–305 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950.Google Scholar
  21. 21.
    H. Nakano, Topology of linear topological spaces, Maruzen Co. Ltd., Tokyo, 1951.Google Scholar
  22. 22.
    M. Sanchón and J.M. Urbano, Entropy solutions for the p(x)-Laplace equation Trans. Amer. Math. Soc., 361, (2009), 6387-6405.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integr. Transf. Spec. F., 16-No.5-6, (2005), 461-482.Google Scholar
  24. 24.
    Sharapudinov I.I., Topology of the space L p(t)([0, t]). Math. Notes 26, 796-806 (1980)CrossRefGoogle Scholar
  25. 25.
    W. Sprößig, On Helmotz decompositions and their generalizations-an overview, Math. Meth. in Appl. Sc., 33-No.4, (2009), 374-383.Google Scholar
  26. 26.
    T. Tao, Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conference Series in Mathematics-Vol.106, American Mathematical Society, 2006.Google Scholar
  27. 27.
    G. Velo, Mathematical Aspects of the nonlinear Schrödinger Equation, Proceedings of the Euroconference on nonlinear Klein-Gordon and Schrdinger systems: theory and applications, L. Vázquez et al. (eds.), World Scientific, Singapore, (1996), 39-67.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Fachgebiet MathematikErziehungswissenschaftliche Fakultät Universität ErfurtErfurtGermany
  2. 2.CIDMA - Center for Research and Development in Mathematics and Applications, Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations