Milan Journal of Mathematics

, Volume 82, Issue 1, pp 99–128 | Cite as

Phase Transition Models in Atmospheric Dynamics

  • Arthur Bousquet
  • Michele Coti Zelati
  • Roger Temam


Abstract From both the theoretical and numerical viewpoints, we study a system of differential inclusions describing the evolution of the temperature and the specific humidity distributions in a system of moist air. We allow the so-called saturation concentration parameter to depend on the temperature, and thus we consider more general and interesting phase-change effects than the ones addressed in [2].

Mathematics Subject Classification (2010)

Primary 35Q35 Secondary 35B30 76D03 86A10 


Atmospheric equations specific humidity saturation phase-change variational inequalities differential inclusions finite volumes upwind discretization methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barbu V.: Nonlinear differential equations of monotone types in Banach spaces. Springer, New York (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    M. Coti Zelati, M. Frémond, R. Temam, and J. Tribbia, The equations of the atmosphere with humidity and saturation: uniqueness and physical bounds, to appear.Google Scholar
  3. 3.
    M. Coti Zelati, A. Huang, and R. Temam, The primitive equations of the atmosphere in presence of vapor saturation. In preparation.Google Scholar
  4. 4.
    M. Coti Zelati and R. Temam, The atmospheric equation of water vapor with saturation, Boll. Unione Mat. Ital. (9) 5 (2012), 309–336.Google Scholar
  5. 5.
    Dauge M.: Elliptic boundary value problems on corner domains. Springer-Verlag, Berlin (1988)zbMATHGoogle Scholar
  6. 6.
    G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin, 1976.Google Scholar
  7. 7.
    I. Ekeland and R. Temam, Convex analysis and variational problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.Google Scholar
  8. 8.
    B. D. Ewald and R. Temam, Maximum principles for the primitive equations of the atmosphere, Discrete Contin. Dynam. Systems 7 (2001), no. 2, 343–362.Google Scholar
  9. 9.
    Eymard R., T. Gallouët, and R. Herbin, Finite volume methods, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000.Google Scholar
  10. 10.
    R. Eymard, T. Gallouët, and R. Herbin, A cell-centered finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal. 26 (2006), 326–353.Google Scholar
  11. 11.
    A. E. Gill, Atmosphere-ocean dynamics, International Geophysics Series, Vol. 30, Academic Press, San Diego, 1982.Google Scholar
  12. 12.
    P. Grisvard, Elliptic problems in nonsmooth domains, Pitman (Advanced Publishing Program), Boston, MA, 1985.Google Scholar
  13. 13.
    G. J. Haltiner, Numerical weather prediction, John Wiley & Sons, New York, 1971.Google Scholar
  14. 14.
    G. J. Halitner and R. T. Williams, Numerical prediction and dynamic meteorology, John Wiley & Sons, New York, 1980.Google Scholar
  15. 15.
    D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press Inc., New York, 1980.Google Scholar
  16. 16.
    R. J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.Google Scholar
  17. 17.
    J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, 1969.Google Scholar
  18. 18.
    J.-L. Lions, R. Temam, and S.Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity 5 (1992), no. 2, 237–288.Google Scholar
  19. 19.
    J.-L. Lions, R. Temam, and S. Wang, Models for the coupled atmosphere and ocean. (CAO I), Comput. Mech. Adv. 1 (1993), no. 1, 5–119.Google Scholar
  20. 20.
    J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.Google Scholar
  21. 21.
    M. Petcu, R. M. Temam, and M. Ziane, Some mathematical problems in geophysical fluid dynamics, Handbook of numerical analysis. Vol. XIV. Special volume: computational methods for the atmosphere and the oceans, Handb. Numer. Anal., vol. 14, Elsevier/North-Holland, Amsterdam, 2009, pp. 577–750.Google Scholar
  22. 22.
    R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, NJ, 1997.Google Scholar
  23. 23.
    R. R. Rogers and M. K. Yau, A Short Course in Cloud Physics, Butterworth-Heinemann, 1989.Google Scholar
  24. 24.
    R. Temam, Navier-Stokes equations, theory and numerical analysis, AMS Chelsea Publishing, Providence, 2001.Google Scholar
  25. 25.
    M. Ziane, Regularity results for the stationary primitive equations of the atmosphere and the ocean, Nonlinear Anal. 28 (1997), 289–313.Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Arthur Bousquet
    • 1
  • Michele Coti Zelati
    • 1
  • Roger Temam
    • 1
  1. 1.Indiana University – Institute for Scientific Computing and Applied MathematicsBloomingtonUSA

Personalised recommendations