Milan Journal of Mathematics

, Volume 81, Issue 1, pp 121–151

Non-Archimedean Probability

Article

Abstract

We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned probability zero (in other words: the probability functions are regular). We use a non-Archimedean field as the range of the probability function. As a result, the property of countable additivity in Kolmogorov’s axiomatization of probability is replaced by a different type of infinite additivity.

Mathematics Subject Classification (2010)

60A05 03H05 

Keywords

Probability axioms of Kolmogorov nonstandard models fair lottery non-Archimedean fields 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartha P., Hitchcock C.: The shooting-room paradox and conditionalizing on measurably challenged sets. Synthese 118, 403–437 (1999)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    V. Benci, I numeri e gli insiemi etichettati, Conferenze del seminario di matematica dell’ Universita’ di Bari, vol. 261, Laterza, Bari, Italy, 1995, p. 29.Google Scholar
  3. 3.
    V. Benci and M. Di Nasso, Alpha-theory: an elementary axiomatic for nonstandard analysis, Expositiones Mathematicae 21 (2003), 355–386.Google Scholar
  4. 4.
    Benci V.: Numerosities of labelled sets: a new way of counting. Advances in Mathematics 173, 50–67 (2003)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Benci V., Di Nasso M., Forti M.: An Aristotelian notion of size. Annals of Pure and Applied Logic 143, 43–53 (2006)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    V. Benci, The eightfold path to nonstandard analysis, Nonstandard Methods and Applications in Mathematics (N. J. Cutland, M. Di Nasso, and D. A. Ross, eds.), Lecture Notes in Logic, vol. 25, Association for Symbolic Logic, AK Peters, Wellesley, MA, 2006, pp. 3–44.Google Scholar
  7. 7.
    V. Benci, L. Horsten, and S. Wenmackers, Infinitesimal probabilities, In preparation, 2012.Google Scholar
  8. 8.
    E. Bottazzi, ω-Theory: Mathematics with Infinite and Infinitesimal Numbers, Master thesis, University of Pavia, Italy, 2012.Google Scholar
  9. 9.
    Cutland N.: Nonstandard measure theory and its applications. Bulletin of the London Mathematical Society 15, 529–589 (1983)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    B. de Finetti, Theory of probability, Wiley, London, UK, 1974, Translated by: A. Machí and A. Smith.Google Scholar
  11. 11.
    T. Gilbert and N. Rouche, Y a-t-il vraiment autant de nombres pairs que de naturels?, Méthodes et Analyse Non Standard (A. Pétry, ed.), Cahiers du Centre de Logique, vol. 9, Bruylant-Academia, Louvain-la-Neuve, Belgium, 1996, pp. 99–139.Google Scholar
  12. 12.
    Hájek A.: What conditional probability could not be. Synthese 137, 273–323 (2003)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    J.B. Kadane, M.J. Schervish, and T. Seidenfeld, Statistical implications of finitely additive probability, Bayesian Inference and Decision Techniques (P.K. Goel and A. Zellnder, eds.), Elsevier, Amsterdam, The Netherlands, 1986.Google Scholar
  14. 14.
    H.J. Keisler, Foundations of infinitesimal calculus, University of Wisconsin, Madison, WI, 2011.Google Scholar
  15. 15.
    H.J. Keisler and S. Fajardo, Model theory of stochastic processes, Lecture Notes in Logic, Association for Symbolic Logic, 2002.Google Scholar
  16. 16.
    A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse der Mathematik, 1933, Translated by N. Morrison, Foundations of probability. Chelsea Publishing Company, 1956 (2nd ed.).Google Scholar
  17. 17.
    Levi I.: Coherence, regularity and conditional probability. Theory and Decision 9, 1–15 (1978)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    D. K. Lewis, A subjectivist’s guide to objective chance, Studies in Inductive Logic and Probability (R. C. Jeffrey, ed.), University of California Press, Berkeley, CA, 1980, pp. 263–293.Google Scholar
  19. 19.
    P.A. Loeb, Conversion from nonstandard to standard measure spaces and applications in probability theory, Transactions of the American Mathematical Society 211 (1975), 113–122.Google Scholar
  20. 20.
    E. Nelson, Radically elementary probability theory, Princeton University Press, Princeton, NJ, 1987.Google Scholar
  21. 21.
    B. Skyrms, Causal necessity, Yale University Press, New Haven, CT, 1980.Google Scholar
  22. 22.
    R. Weintraub, How probable is an infinite sequence of heads? A reply to Williamson, Analysis 68 (2008), 247–250.Google Scholar
  23. 23.
    S. Wenmackers and L. Horsten, Fair infinite lotteries, Accepted in Synthese, DOI: 10.1007/s11229-010-9836-x, 2010.Google Scholar
  24. 24.
    Williamson T.: How probable is an infinite sequence of heads?. Analysis 67, 173–180 (2007)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Dipartimento di Matematica ApplicataUniversitá degli Studi di PisaPisaItaly
  2. 2.Department of Mathematics, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of PhilosophyUniversity of BristolBristolUnited Kingdom
  4. 4.Faculty of PhilosophyUniversity of GroningenGroningenThe Netherlands

Personalised recommendations