Milan Journal of Mathematics

, Volume 80, Issue 2, pp 369–379 | Cite as

The Voronoi Implicit Interface Method and Computational Challenges in Multiphase Physics

  • Robert I. Saye
  • James A. Sethian


We review some of the motivation and development of the Voronoi Implicit Interfaces Method (VIIM), first introduced in [10], for tracking multiple interacting and evolving regions, whose motion is determined by complex physics that include hydrodynamic, elastic, and geometric forces. The method automatically handles multiple junctions, triple points and quadruple points in two dimensions, as well as triple lines, etc. in higher dimensions, and topological changes in the system occur naturally, with no surgery required.


Voronoi Reconstructions Level Set Methods Multiphase Flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Adalsteinsson, and J. A. Sethian, A Fast Level Set Method for Propagating Interfaces, J. Comp. Phys., 118, 2, pp. 269 – 277, 1995.Google Scholar
  2. 2.
    Chopp, D.L. Some Improvements of the Fast Marching Method SIAM Journal Scientific Computing, 23, 1, 2001.Google Scholar
  3. 3.
    Dziuk, G. and Elliott, C.M., Finite elements on evolving surfaces, IMA Journal of Numerical Analysis, 2006.Google Scholar
  4. 4.
    M. Elsey, S. Esedoglu and P. Smereka, Diffusion generated motion for grain growth in two and three dimensions, J. Comp. Phys, 228, 21, pp. 8015–8033, 2009.Google Scholar
  5. 5.
    Grayson, M., The Heat Equation Shrinks Embedded Plane Curves to Round Points, J. Diff. Geom., Vol. 26, 285, 1987.Google Scholar
  6. 6.
    Kim, Y., Lai, M-C., and Peskin, C., Numerical simulations of two-dimensional foam by the immersed boundary method, J. Comp. Phys., 229, 13, 2010.Google Scholar
  7. 7.
    B. Merriman, J. K. Bence and S. J. Osher, Motion of Multiple Junctions: A Level Set Approach,Google Scholar
  8. 8.
    Noh, W. and Woodward, P.: A Simple Line Interface Calculation. Proceedings, Fifth International Conference on Fluid Dynamics, A.I. vn de Vooran and P.J. Zandberger, Eds.: Springer-Verlag, 1976.Google Scholar
  9. 9.
    S. Osher, and J. A. Sethian, Fronts Propagating with Curvature–Dependent Speed: Algorithms Based on Hamilton–Jacobi Formulations, J. Comp. Phys., 79, 1, pp. 12 – 49, 1988.Google Scholar
  10. 10.
    R. Saye and J. A. Sethian, The Voronoi Implicit Interface Method for computing Multiphase Physics, Proc. Nat. Acad. Sci., vol 108, 49, pp. 19498 – 19503, 2011.Google Scholar
  11. 11.
    R. Saye and J. A. Sethian, Analysis and Applications of the Voronoi Implicit Interface Method, Submitted for publication, Journal Computational Physics, Nov. 2011.Google Scholar
  12. 12.
    J. A. Sethian, Curvature and the Evolution of Fronts, Comm. in Math. Phys., 101, pp. 487 – 499, 1985.Google Scholar
  13. 13.
    J. A. Sethian, Numerical Methods for Propagating Fronts, Variational Methods for Free Surface Interfaces, Proceedings of the Sept, 1985 Vallambrosa Conference, Eds. P. Concus and R. Finn, Springer-Verlag, NY, 1987.Google Scholar
  14. 14.
    J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Sciences, Cambridge University Press, 1999.Google Scholar
  15. 15.
    J. A. Sethian, A Fast Marching Level Set Method for Monotonically Advancing Fronts, Proc. Nat. Acad. Sci., 93, 4, pp. 1591 – 1595, 1996.Google Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations