Milan Journal of Mathematics

, Volume 80, Issue 1, pp 1–24 | Cite as

Theta Characteristics and Their Moduli

  • Gavril FarkasEmail author


We discuss topics related to the geometry of theta characteristics on algebraic curves. They include the birational classification of the moduli space S g of spin curves of genus g, interpretation of theta characteristics as quadrics in a vector space over the field with two elements as well as the connection with modular forms and superstring scattering amplitudes. Special attention is paid to the historical development of the subject.


Modulus Space Line Bundle Modular Form Theta Function Spin Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACGH.
    Arbarello E., Cornalba M., Griffiths P.A, Harris J.: Geometry of algebraic curves, Grundlehren der mathematischen Wissenschaften 267. Springer, Verlag (1985)Google Scholar
  2. Arf.
    Arf C.: Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. J. reine angewandte Mathematik 183, 148–167 (1941)MathSciNetGoogle Scholar
  3. At.
    Atiyah M.: Riemann surfaces and spin structures, Annales Scient. École Normale Sup 4, 47–62 (1971)MathSciNetzbMATHGoogle Scholar
  4. Ba.
    H.F. Baker, Abelian functions: Abel’s theorem and the allied theory of theta functions, 1897, reissued in the Cambridge Mathematical Library 2006.Google Scholar
  5. BDpp.
    S. Boucksom, J.P. Demailly, M. Păun and T. Peternell, The pseudo–effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, arXiv:math/0405285.Google Scholar
  6. BL.
    Birkenhake C., Birkenhake C.: Complex abelian varieties, Grundlehren der mathematischen Wissenschaften 302. Springer, Verlag (2004)Google Scholar
  7. CDvg.
    Cacciatori S., Dalla Piazza F., van Geemen B.: Modular forms and three loop superstring amplitudes. Nuclear Physics B 800, 565–590 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. Ca.
    Caporaso L.: A compactification of the universal Picard variety over the moduli space of stable curves. Journal of the American Mathematical Society 7, 589–660 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  9. CC.
    Caporaso L., Casagrande C.: Combinatorial properties of stable spin curves. Communications in Algebra 359, 3733–3768 (2007)MathSciNetzbMATHGoogle Scholar
  10. CS.
    Caporaso L., Caporaso L.: Characterizing curves by their theta characteristics. J. reine angewandte Mathematik 562, 101–135 (2003)MathSciNetzbMATHGoogle Scholar
  11. Cob.
    A. Coble, Algebraic geometry and theta functions, American Mathematical Society Colloquium Publications, Volume X 1929, Reprinted and revised in 1961.Google Scholar
  12. Cor.
    M. Cornalba, Moduli of curves and theta characteristics, in: Lectures on Riemann surfaces (Trieste, 1987), World Sci. Publ., 560–589.Google Scholar
  13. DO.
    I. Dolgachev and D. Ortland, Point sets in projective space and theta functions, Astérisque, Volume 165 (1988), Société Mathématique de France.Google Scholar
  14. DK.
    Dolgachev I., Kanev V.: Polar covariants of plane cubics and quartics. Advances in Mathematics 98, 216–301 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  15. EH.
    Eisenbud D., Harris J.: The Kodaira dimension of the moduli space of curves of genus ≥  23. Inventiones Math 90, 359–387 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  16. F1.
    Farkas G.: Gaussian maps, Gieseker–Petri loci and large theta characteristics. J. reine angewandte Mathematik 581, 151–173 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  17. F2.
    Farkas G.: The birational type of the moduli space of even spin curves. Advances in Mathematics 223, 433–443 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  18. F3.
    G. Farkas, Brill–Noether geometry on moduli spaces of spin curves, in: Classification of algebraic varieties, Schiermonnikoog 2009 (C. Faber, G. van der Geer, E. Looijenga editors), Series of Congress Reports, European Mathematical Society 2011, 259–276.Google Scholar
  19. F4.
    Farkas G.: Koszul divisors on moduli spaces of curves. American Journal of Mathematics 131, 819–869 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. FI.
    G. Farkas E. Izadi , TheScorza correspondence on the moduli space of stable spin curves, in preparation.Google Scholar
  21. FL.
    FarkasG. Ludwig K.: The Kodaira dimension of the moduli space of Prym varieties. Journal of the European Mathematical Society 12, 755–795 (2010)CrossRefGoogle Scholar
  22. FV1.
    G. Farkas and A. Verra, The geometry of the moduli space of odd spin curves, arXiv:1004.0278.Google Scholar
  23. FV2.
    G. Farkas and A. Verra, Moduli of theta characteristics via Nikulin surfaces, arXiv:1104.0273, to appear in Mathematische Annalen.Google Scholar
  24. Fed.
    M. Fedorchuk, The log canonical model program on the moduli space of stable curves of genus four, arXiv:1106.5012, to appear in International Mathematical Research Notices.Google Scholar
  25. Fr1.
    Frobenius G.: Über Thetafunktionen mehrerer Variablen. J. reine angewandte Mathematik 96, 100–122 (1884)zbMATHCrossRefGoogle Scholar
  26. Fr2.
    Frobenius G.: Über Gruppen von Thetacharakteristiken. J. reine angewandte Mathematik 96, 81–99 (1884)zbMATHGoogle Scholar
  27. Fr3.
    G. Frobenius, Antrittsrede, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 1893, 626–632.Google Scholar
  28. vGS.
    van Geemen B., Sarti A.: Nikulin involutions on K3 surfaces. Mathematische Zeitschrift 255, 731–753 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  29. Go.
    Göpel A.: Theoriae Transcendentium Abelianarum primi ordinis adumbratio levis. J. reine angewandte Mathematik 35, 277–312 (1877)Google Scholar
  30. G.
    Green M.: Koszul cohomology and the cohomology of projective varieties. Journal of Differential Geometry 19, 125–171 (1984)MathSciNetzbMATHGoogle Scholar
  31. GH.
    B. Gross and J. Harris, On some geometric constructions related to theta characteristics, in: Contributions to automorphic forms, geometry and number theory, Johns Hopkins University Press, Baltimore 2004, 279–311.Google Scholar
  32. Gr.
    Grushevsky S.: Superstring scattering amplitudes in higher genus. Communications in Mathematical Physics 294, 343–352 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  33. GSM.
    S. Grushevsky and R. Salvati Manni, The Scorza correspondence in genus 3, arXiv:1009.0375.Google Scholar
  34. H.
    Harris J.: Theta characteristics on algebraic curves. Transactions American Mathematical Society 271, 611–638 (1982)zbMATHCrossRefGoogle Scholar
  35. HM.
    Harris J., Mumford D.: On the Kodaira dimension of \({\overline{\mathcal{M}}_g}\), Inventiones Math.. 67, 23-88. (1982)Google Scholar
  36. Kr.
    A. Krazer, Lehrbuch der Thetafunktionen, Verlag von B.G. Teubner 1903, Leipzig.Google Scholar
  37. LOG.
    Logan A.: The Kodaira dimension of moduli spaces of curves with marked points. American Journal of Mathematics 125, 105–138 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  38. Lud.
    Ludwig K.: On the geometry of the moduli space of spin curves. Journal of Algebraic Geometry 19, 133–171 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  39. Na.
    Nagaraj D.: . 75, 287–297 (1990)MathSciNetzbMATHGoogle Scholar
  40. Ma.
    Mattuck A.: Arthur Bryan Coble. Bulletin of the American Mathematical Society 76, 693–699 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  41. M1.
    S. Mukai, Curves, K3 surfaces and Fano 3–folds of genus ≤  10, in: Algebraic geometry and commutative algebra 357–377, 1988 Kinokuniya, Tokyo.Google Scholar
  42. M2.
    S. Mukai, Curves and Grassmannians, in: Algebraic Geometry and Related Topics, eds. J.–H. Yang, Y. Namikawa, K. Ueno, 19–40, 1992 International Press.Google Scholar
  43. M3.
    Mukai S.: Curves and symmetric spaces I. American Journal of Mathematics 117, 1627–1644 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  44. M4.
    Mukai S.: Curves and symmetric spaces II. Annals of Mathematics 172, 1539–1558 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  45. Mu.
    Mumford D.: Theta characteristics of an algebraic curve. Annales Scient. École Normale Sup. 4, 181–192 (1971)MathSciNetzbMATHGoogle Scholar
  46. P.
    Pandharipande R.: A compactification over \({\overline{\mathcal{M}}_g}\) of the universal moduli space of slope-semistable vector bundles. Journal of the American Mathematical Society. 9, 425ΓÇô471 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  47. Pu.
    A. Putman, The Picard group of the moduli space of curves with level structure, to appear in Duke Mathematical Journal.Google Scholar
  48. R.
    M. Reid, Infinitesimal view of extending a hyperplane section-deformation theory and computer algebra, in: Algebraic geometry L’Aquila 1988, Lecture Notes in Mathematics 1417, 214-286, Springer Verlag.Google Scholar
  49. Ro.
    G. Rosenhain, Mémoire sur les fonctions de deux variables, qui sont les inverses des intégrales ultra-elliptiques de la premiére classe, Paris 1851.Google Scholar
  50. SM1.
    Salvati Manni R.: Modular varieties with level 2 theta structure. American Journal of Mathematics 116, 1489–1511 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  51. SM2.
    R. Salvati Manni, Remarks on superstring amplitudes in higher genus, arXiv:0804.0512, Nuclear Physics B, 801 (2008), 163-173.Google Scholar
  52. Sc.
    Scorza G.: Sopra le curve canoniche di uno spazio lineare qualunque e sopra certi loro covarianti quartici. Atti Accad. Reale Sci. Torino 35, 765–773 (1900)Google Scholar
  53. T1.
    Teixidori Bigas M.: Half-canonical series on algebraic curves. Transactions of the American Mathematical Society 302, 99–115 (1987)MathSciNetGoogle Scholar
  54. T2.
    Teixidori Bigas M.: The divisor of curves with a vanishing theta-null. Compositio Math. 66, 15–22 (1988)MathSciNetGoogle Scholar
  55. Wi.
    W. Wirtinger, Untersuchungen über Thetafunktionen, Verlag von B.G. Teubner, Leipzig 1895.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Humboldt-Universität zu BerlinInstitut für MathematikBerlinGermany

Personalised recommendations