Milan Journal of Mathematics

, Volume 78, Issue 1, pp 135–152

Riemann Zeros and Random Matrix Theory

Article

Abstract

In the past dozen years random matrix theory has become a useful tool for conjecturing answers to old and important questions in number theory. It was through the Riemann zeta function that the connection with random matrix theory was first made in the 1970s, and although there has also been much recent work concerning other varieties of L-functions, this article will concentrate on the zeta function as the simplest example illustrating the role of random matrix theory.

Mathematics Subject Classification (2010)

11M06 11M26 15B52 

Keywords

Random matrix theory Riemann zeta function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkinson F.V.: The mean value of the zeta-function on the critical line. Quart. J. Math. Oxford Ser. 10, 122–128 (1939)CrossRefGoogle Scholar
  2. 2.
    Atkinson F.V.: The mean value of the zeta-function on the critical line. Proc. London Math. Soc.(2) 47, 174–200 (1941)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Baik, P. Deift, and E. Strahof, Products and ratios of characteristic polynomials of random Hermitian matrices, J. Math. Phys., 44(8):3657–70, 2003.Google Scholar
  4. 4.
    Baker T.H., Forrester P.J.: Finite-N fluctuation formulas for random matrices. J. Stat. Phys., 88, 1371–1385 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barnes E.W.: The theory of the G-function. Q. J. Math., 31, 264–314 (1900)MATHGoogle Scholar
  6. 6.
    E.B. Bogomolny and J.P. Keating, Random matrix theory and the Riemann zeros I: three- and four-point correlations, Nonlinearity, 8:1115–1131, 1995.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E.B. Bogomolny and J.P. Keating, Gutzwiller’s trace formula and spectral statistics: beyond the diagonal approximation, Phys. Rev. Lett., 77(8):1472–1475, 1996.MATHCrossRefGoogle Scholar
  8. 8.
    E.B. Bogomolny and J.P. Keating, Random matrix theory and the Riemann zeros II:npoint correlations, Nonlinearity, 9:911–935, 1996.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Borodin and E. Strahov, Averages of characteristic polynomials in random matrix theory,Comm. Pure Appl. Math., 59(2):161–253, 2006.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Bourgade, C.P. Hughes, A. Nikeghbali, and M. Yor, The characteristic polynomial of a random unitary matrix: A probabilistic approach, Duke Math. J., 145(1):45–69, 2008.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    E. Brézin and S. Hikami, Characteristic polynomials of random matrices, Comm. Math. Phys., 214:111–135, 2000, arXiv:math-ph/9910005.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bui H., Keating J.P.: On the mean values of Dirichlet L-functions. Proc. London Math. Soc., 95(3), 273–298 (2007)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    H. Bui and J.P. Keating, On the mean values of L-functions in orthogonal and symplectic families, Proc. London Math. Soc., 96(3):335–366, 2008.MATHMathSciNetGoogle Scholar
  14. 14.
    D. Bump and A. Gamburd, On the averages of characteristic polynomials from classical groups, Comm. Math. Phys., 265(1):227–274, 2006, arXiv:math-ph/0502043.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    V. Chandee and K. Soundararajan, Bounding |ζ(1/2 + it)| on the Riemann hypothesis, preprint, arXiv:0908.2008.Google Scholar
  16. 16.
    J.B. Conrey, Families of L-functions and 1-level densities, In Recent perspectives on random matrix theory and number theory, LMS Lecture Note Series 322, pages 225–49. Cambridge University Press, Cambridge, 2005.Google Scholar
  17. 17.
    J.B. Conrey, Notes on eigenvalue distributions for the classical compact groups, In Recent perspectives on random matrix theory and number theory, LMS Lecture Note Series 322, pages 111–45. Cambridge University Press, Cambridge, 2005.Google Scholar
  18. 18.
    J.B. Conrey, D.W. Farmer, J.P. Keating, M.O. Rubinstein, and N.C. Snaith, Autocorrelation of random matrix polynomials, Comm. Math. Phys., 237(3):365–395, 2003, arXiv:math-ph/0208007.MATHMathSciNetGoogle Scholar
  19. 19.
    J.B. Conrey, D.W. Farmer, J.P. Keating, M.O. Rubinstein, and N.C. Snaith, Integral moments of L-functions, Proc. London Math. Soc., 91(1):33–104, 2005, arXiv:math.nt/0206018.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    J.B. Conrey, D.W. Farmer, and M.R. Zirnbauer, Howe pairs, supersymmetry, and ratios of random characteristic polynomials for the unitary groups U(N), preprint, arXiv:math-ph/0511024.Google Scholar
  21. 21.
    J.B. Conrey, D.W. Farmer, andM.R. Zirnbauer, Autocorrelation of ratios of L-functions, Comm. Number Theory and Physics, 2(3):593–636, 2008, arXiv:0711.0718.MATHMathSciNetGoogle Scholar
  22. 22.
    Conrey J.B., Forrester P.J., Snaith N.C.: Averages of ratios of characteristic polynomials for the compact classical groups. Int. Math. Res. Notices 7, 397–431 (2005)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Conrey J.B., Ghosh A.: On mean values of the zeta-function. Mathematika 31, 159–161 (1984)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    J.B. Conrey and A. Ghosh, Mean values of the zeta-function, iii, Proceedings of the Amalfi Conference on Analytic Number Theory, Università di Salerno, 1992.Google Scholar
  25. 25.
    J.B. Conrey and S.M. Gonek, High moments of the Riemann zeta-function, Duke Math. J., 107:577–604, 2001.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    J.B. Conrey, J.P. Keating, M.O. Rubinstein, and N.C. Snaith, On the frequency of vanishing of quadratic twists of modular L-functions, In Number Theory for the Millennium I: Proceedings of the Millennial Conference on Number Theory; editor, M.A. Bennett et al., pages 301–315. A K Peters, Ltd, Natick, 2002, arXiv:math.nt/0012043.Google Scholar
  27. 27.
    J.B. Conrey, A. Pokharel, M.O. Rubinstein, and M. Watkins, Secondary terms in the number of vanishings of quadratic twists of elliptic curve L-functions, In Ranks of Elliptic Curves and Random Matrix Theory, LMS lecture note series 341, pages 215–232. Cambridge University Press, Cambridge, 2007, arXiv:math.NT/0509059.Google Scholar
  28. 28.
    J.B. Conrey and N.C. Snaith, Applications of the L-functions ratios conjectures, Proc. London Math. Soc., 94(3):594–646, 2007, arXiv:math.NT/0509480.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    J.B. Conrey and N.C. Snaith, Correlations of eigenvalues and Riemann zeros, Comm. Number Theory and Phyics, 2(3):477–536, 2008, arXiv:0803.2795.MATHMathSciNetGoogle Scholar
  30. 30.
    J.B. Conrey and N.C. Snaith, Triple correlation of the Riemann zeros, Journal de Théorie des Nombres de Bordeaux, 20:61–106, 2008, arXiv:math/0610495.MATHMathSciNetGoogle Scholar
  31. 31.
    Costin O., Lebowitz J.L.: Gaussian fluctuation in random matrices. Phys. Rev. Lett., 75(1), 69–72 (1995)CrossRefGoogle Scholar
  32. 32.
    C. David, J. Fearnley, and H. Kisilevsky: On the vanishing of twisted L-functions of elliptic curves, Experiment. Math., 13(2), 185–98, 2004Google Scholar
  33. 33.
    A. Diaconu, D. Goldfeld, and J. Hoffstein, Multiple Dirichlet series and moments of zeta- and L-functions, Compos. Math., 139(3):297–360, 2003, arXiv:math.nt/0110092.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    F.J. Dyson, Statistical theory of the energy levels of complex systems, i, ii and iii, J. Math. Phys., 3:140–175, 1962.CrossRefMathSciNetGoogle Scholar
  35. 35.
    H.M. Edwards, Riemann’s Zeta Function, Dover Publications, Inc., New York, 1974.MATHGoogle Scholar
  36. 36.
    D.W. Farmer, S. M.Gonek, and C.P. Hughes, The maximum size of L-functions, Journal fur die Reine und angewandte mathematik, 609:215–36, 2007.Google Scholar
  37. 37.
    Y.V. Fyodorov and E. Strahov, An exact formula for general spectral correlation function of random Hermitian matrices, J. Phys. A: Math. Gen., 36(12):3203–13, 2003, arXiv:math-ph/0204051.Google Scholar
  38. 38.
    S.M. Gonek, C.P. Hughes, and J.P. Keating, A hybrid Euler-Hadamard product formula for the Riemann zeta function, Duke Math. J., 136(3):507–549, 2007.MATHMathSciNetGoogle Scholar
  39. 39.
    G.H. Hardy and J.E. Littlewood, Contributions to the theory of the Riemann zetafunction and the theory of the distribution of primes, Acta Math., 41:119–196, 1918.CrossRefMathSciNetGoogle Scholar
  40. 40.
    Heath-Brown D.R.: The fourth power moment of the Riemann zeta function. Proc. London Math. Soc. (3) 38, 385–422 (1979)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    D.R. Heath-Brown, Fractional moments of the Riemann zeta-function, J.London Math. Soc. (2), 24:65–78, 1981.MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    D.R. Heath-Brown, Fractional moments of the Riemann zeta-function, ii, Quart. J. Math. Oxford Ser. (2), 44:185–197, 1993.MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    D.A. Hejhal, On the triple correlation of zeros of the zeta function, Inter. Math. Res. Notices, 7:293–302, 1994.CrossRefMathSciNetGoogle Scholar
  44. 44.
    C.P. Hughes, J.P. Keating, and N. O’Connell, On the characteristic polynomial of a random unitary matrix, Comm. Math. Phys., 220(2):429–451, 2001.MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    C.P. Hughes and S.J. Miller, Low-lying zeros of L-functions with orthogonal symmetry, Duke Math. J., 136(1):115–172, 2007.MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    C.P. Hughes and Z. Rudnick, Linear statistics of low-lying zeros of L-functions, Q. J. Math., 54(3):309–333, 2003, arXiv:math.nt/0208230.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    D.K. Huynh, J.P. Keating, and N.C. Snaith, Lower order terms for the one-level density of elliptic curve L-functions, J. Number Theory, 129:2883–2902, 2009, arXiv:0811.2304.MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Ingham A.E.: Mean-value theorems in the theory of the Riemann zeta-function. Proc. London Math. Soc. (2) 27, 273–300 (1926)CrossRefGoogle Scholar
  49. 49.
    M. Jutila, On the value distribution of the zeta-function on the critical line, Bull. London Math. Soc., 15:513–518, 1983.MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    N.M. Katz and P. Sarnak, Random Matrices, Frobenius Eigenvalues and Monodromy, American Mathematical Society Colloquium Publications, 45. American Mathematical Society, Providence, Rhode Island, 1999.Google Scholar
  51. 51.
    Katz N.M., Sarnak P.: Zeros of zeta functions and symmetry. Bull. Amer. Math. Soc., 36, 1–26 (1999)MATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    J.P. Keating and N.C. Snaith, Random matrix theory and L-functions at s =  1/2, Comm. Math. Phys, 214:91–110, 2000.MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    J.P. Keating and N.C. Snaith, Random matrix theory and ζ (1/2 +  it), Comm. Math. Phys., 214:57–89, 2000.MATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    M.L. Mehta, Random Matrices, Academic Press, London, second edition, 1991.Google Scholar
  55. 55.
    S.J. Miller, A symplectic test of the L-functions ratios conjecture, Int. Math. Res. Notices, 2008, article ID rnm 146, arXiv:0704.0927.Google Scholar
  56. 56.
    S.J. Miller, An orthogonal test of the L-functions ratios conjecture, Proc. London Math. Soc., 99:484–520, 2009, arXiv:0805.4208.MATHCrossRefGoogle Scholar
  57. 57.
    H. L. Montgomery, The pair correlation of the zeta function, Proc. Symp. Pure Math 24, 181–93, 1973Google Scholar
  58. 58.
    A.M. Odlyzko, The 1020th zero of the Riemann zeta function and 70 million of its neighbors, preprint, 1989, http://www.dtc.umn.edu/~odlyzko/unpublished/index.html.
  59. 59.
    K. Ramachandra, Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series - i, Hardy-Ramanujan J., 1:1–15, 1978.MATHMathSciNetGoogle Scholar
  60. 60.
    K. Ramachandra, Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series - ii, Hardy-Ramanujan J., 3:1–24, 1980.MathSciNetGoogle Scholar
  61. 61.
    K. Ramachandra, Some remarks on the mean value of the Riemann zeta-function and other Dirichlet series - iii, Ann. Acad. Sci. Fenn. Ser. AI Math., 5:145–158, 1980.MathSciNetGoogle Scholar
  62. 62.
    Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, Duke Math. J., 81(2):269–322, 1996.MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Soundararajan K.: Mean values of the Riemann zeta-function. Mathematika 42, 158–174 (1995)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    K. Soundararajan, Extreme values of zeta and L-functions, Math. Ann., 342:467–86, 2008.Google Scholar
  65. 65.
    K. Soundararajan, Moments of the Riemann zeta-function, Ann. of Math., 170(2):981–93, 2009, arXiv:math/0612106.Google Scholar
  66. 66.
    J. Stopple, The quadratic character experiment, Experiment. Math., 18(2):193–200, 2009, arXiv:0802.4255.MATHMathSciNetGoogle Scholar
  67. 67.
    E.C. Titchmarsh, The Theory of the Riemann Zeta Function, Clarendon Press, Oxford, second edition, 1986.Google Scholar
  68. 68.
    H. Weyl, Classical Groups, Princeton University Press, 1946.Google Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  1. 1.School of MathematicsUniversity of BristolBristolUK

Personalised recommendations