Advertisement

Milan Journal of Mathematics

, Volume 72, Issue 1, pp 273–313 | Cite as

On Inverse Problems for Semiconductor Equations

  • M. Burger
  • H. W. Engl
  • A. Leitao
  • P. A. Markowich
Original Paper

Abstract.

This paper is devoted to the investigation of inverse problems related to stationary drift-diffusion equations modeling semiconductor devices. In this context we analyze several identification problems corresponding to different types of measurements, where the parameter to be reconstructed is an inhomogeneity in the PDE model (doping profile). For a particular type of measurement (related to the voltage-current map) we consider special cases of drift-diffusion equations, where the inverse problems reduces to a classical inverse conductivity problem. A numerical experiment is presented for one of these special situations (linearized unipolar case).

Keywords

Numerical Experiment Equation Modeling Inverse Problem Identification Problem Special Situation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag, Basel 2004

Authors and Affiliations

  • M. Burger
    • 1
  • H. W. Engl
    • 1
  • A. Leitao
    • 2
  • P. A. Markowich
    • 3
  1. 1.Institut für IndustriemathematikJohannes Kepler UniversitätLinzAustria
  2. 2.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of Sciences c/o Johannes Kepler UniversitätLinzAustria
  3. 3.Institut für MathematikUniversität WienViennaAustria

Personalised recommendations