Skip to main content
Log in

SPHERICAL ACTIONS ON ISOTROPIC FLAG VARIETIES AND RELATED BRANCHING RULES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be a symplectic or special orthogonal group, let H be a connected reductive subgroup of G, and let X be a flag variety of G. We classify all triples (G, H, X) such that the natural action of H on X is spherical. For each of these triples, we determine the restrictions to H of all irreducible representations of G realized in spaces of sections of homogeneous line bundles on X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Akhiezer, D. Panyushev, Multiplicities in the branching rules and the complexity of homogeneous spaces, Mosc. Math. J. 2 (2002), no. 1, 17–33.

    Article  MathSciNet  Google Scholar 

  2. Р. С. Авдеев, А. В. Петухов, Сферические действия на многообразиях флагов, Матем. сб. 205 (2014), вып. 9, 1223–1263. Engl. transl.: R. S. Avdeev, A. V. Petukhov, Spherical actions on flag varieties, Sb. Math. 205 (2014), no. 9, 1223–1263.

  3. R. Avdeev, A. Petukhov, Branching rules related to spherical actions on flag varieties, Algebr. Represent. Theory 23 (2020), no. 3, 541–581.

    Article  MathSciNet  Google Scholar 

  4. C. Benson, G. Ratcliff, A classiffication of multiplicity free actions, J. Algebra 181 (1996), no. 1, 152–186.

    Article  MathSciNet  Google Scholar 

  5. N. Bourbaki, Groupes et Algèbres de Lie, Chap. IV: Groupes de Coxeter et systèmes de Tits, Chap. V: Groupes engendrés par des réflexions, Chap. VI: Systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.

  6. N. Bourbaki, Groupes et Algèbres de Lie, Chap. VII: Sous-algèbres de Cartan, éléments réguliers, Chap. VIII: Algèbres de Lie semi-simples déployées, Actualités Scientifiques et Industrielles, No. 1364, Hermann, Paris, 1975.

  7. M. Brion, Représentations exceptionnelles des groupes semi-simples, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 345–387.

  8. D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993.

    MATH  Google Scholar 

  9. M. Gerstenhaber, Dominance over the classical groups, Ann. of Math. 74 (1961), no. 3, 532–569.

    Article  MathSciNet  Google Scholar 

  10. X. He, K. Nishiyama, H. Ochiai, Y. Oshima, On orbits in double flag varieties for symmetric pairs, Transform. Groups 18 (2013), no. 4, 1091–1136.

    Article  MathSciNet  Google Scholar 

  11. W. Hesselink, Singularities in the nilpotent scheme of a classical group, Trans. Amer. Math. Soc. 222 (1976), 1–32.

    Article  MathSciNet  Google Scholar 

  12. R. Howe, T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann. 290 (1991), no. 3, 565–619.

    Article  MathSciNet  Google Scholar 

  13. J. C. Jantzen, Representations of Algebraic Groups, Pure and Applied Mathematics, Vol. 131, Academic Press, Inc., Boston, MA, 1987.

  14. D. S. Johnston, R. W. Richardson, Conjugacy classes in parabolic subgroups of semisimple algebraic groups, II, Bull. London Math. Soc. 9 (1977), no. 3, 245–250.

    Article  MathSciNet  Google Scholar 

  15. V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), no. 1, 190–213.

    Article  MathSciNet  Google Scholar 

  16. G. Kempken, Induced conjugacy classes in classical Lie-algebras, Abh. Math. Sem. Univ. Hamburg 53 (1983), 53–83.

    Article  MathSciNet  Google Scholar 

  17. B. Kimelfeld, Homogeneous domains on ag manifolds, J. Math. Anal. Appl. 121 (1987), no. 2, 506–588.

    Article  MathSciNet  Google Scholar 

  18. F. Knop, Some remarks on multiplicity free spaces, in: Representation Theories and Algebraic Geometry, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 514, Dordrecht, Springer Netherlands, 1998, pp. 301–317.

  19. A. S. Leahy, A classification of multiplicity free representations, J. Lie Theory 8 (1998), no. 2, 367–391.

    MathSciNet  MATH  Google Scholar 

  20. LiE, A Computer Algebra Package for Lie Group Computations, available at http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE.

  21. LiE Manual, available at http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/LiE-manual.pdf.

  22. P. Littelmann, On spherical double cones, J. Algebra 166 (1994), no. 1, 142–157.

    Article  MathSciNet  Google Scholar 

  23. I. V. Losev, Algebraic Hamiltonian actions, Math. Z. 263 (2009), no. 3, 685–723.

    Article  MathSciNet  Google Scholar 

  24. P. Magyar, J. Weyman, A. Zelevinsky, Multiple flag varieties of finite type, Adv. Math. 141 (1999), 97–118.

    Article  MathSciNet  Google Scholar 

  25. P. Magyar, J. Weyman, A. Zelevinsky, Symplectic multiple flag varieties of finite type, J. Algebra 230 (2000), no. 1, 245–265.

    Article  MathSciNet  Google Scholar 

  26. А. И. Мальцев, О полупростых подгруппах групп Ли, Изв. АН СССР. Сер. матем. 8 (1944), вып. 4, 143–174. Engl. transl.: A. I. Malcev, On semi-simple subgroups of Lie groups, Amer. Math. Soc. transl., 1950, no. 33, 43 pp.

  27. B. Niemann, Spherical affine cones in exceptional cases and related branching rules, preprint (2011), see arXiv:1111.3823 (2011).

  28. D. I. Panyushev, On the conormal bundle of a G-stable subvariety, Manuscripta Math. 99 (1999), no. 2, 185–202.

    Article  MathSciNet  Google Scholar 

  29. D. I. Panyushev, O. S. Yakimova, Poisson-commutative subalgebras and complete integrability on non-regular coadjoint orbits and flag varieties, Math. Z. 295 (2020), no. 1-2, 101–127.

    Article  MathSciNet  Google Scholar 

  30. A. V. Petukhov, Bounded reductive subalgebras of \( {\mathfrak{sl}}_n \), Transform. Groups 16 (2011), no. 4, 1173–1182.

    Article  MathSciNet  Google Scholar 

  31. Е. В. Пономарева, Классификация двойных многообразий флагов сложности 0 и 1, Изв. РАН. Сер. матем. 77 (2013), вып. 5, 155–178. Engl. transl.: E. V. Ponomareva, Classification of double flag varieties of complexity 0 and 1, Izv. Math. 77 (2013), no. 5, 998–1020.

  32. Е. В. Пономарёва, Инварианты колец Кокса двойных многообразий флагов малой сложности классических групп, Труды Моск. матем. общ-ва 76 (2015), вып. 1, 85–150. Engl. transl.: E. V. Ponomareva, Invariants of the Cox rings of low-complexity double flag varieties for classical groups, Trans. Moscow Math. Soc. 2015, 71–133.

  33. Е. В. Пономарёва, Инварианты колец Кокса двойных многообразий флагов малой сложности для особых групп, матем. сб. 208 (2017), вып. 5, 129–166. Engl. transl.: E. V. Ponomareva, Invariants of the Cox rings of double flag varieties of low complexity for exceptional groups, Sb. Math. 208 (2017), no. 5, 707–742.

  34. R. W. Richardson, Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc. 6 (1974), no. 1, 21–24.

    Article  MathSciNet  Google Scholar 

  35. T. Springer, R. Steinberg, Conjugacy classes, in: Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math., Vol. 131, Springer, New York, 1970, pp. 167–266.

  36. R. Steinberg, Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968.

  37. J. R. Stembridge, Multiplicity-free products and restrictions of Weyl characters, Represent. Theory 7 (2003), 404–439.

    Article  MathSciNet  Google Scholar 

  38. D. A. Timashev, Homogeneous Spaces and Equivariant Embeddings, Encycl. Math. Sci., Vol. 138, Springer-Verlag, Berlin, 2011.

  39. Э. Б. Винберг, Сложность действий редуктивных групп, Функц. анализ. и его прилож. 20 (1986), вып. 1, 1–13. Engl. transl.: E. B. Vinberg, Complexity of actions of reductive groups, Funct. Anal. Appl. 20 (1986), no. 1, 1–11.

  40. Э. Б. Винберг, Б. Н. Кимельфельд, Однородные обласми на флаговых многообразиях и сферические подгруппы полупростых групп Ли, Функц. анализ и его прилож. 12 (1978), вып. 3, 12–19. Engl. transl.: E. B. Vinberg, B. N. Kimel’fel’d, Homogeneous domains on flag manifolds and spherical sub-groups of semisimple Lie groups, Funct. Anal. Appl. 12 (1978), no. 3, 168–174.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ROMAN AVDEEV.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AVDEEV, R., PETUKHOV, A. SPHERICAL ACTIONS ON ISOTROPIC FLAG VARIETIES AND RELATED BRANCHING RULES. Transformation Groups 26, 719–774 (2021). https://doi.org/10.1007/s00031-020-09593-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09593-1

Navigation