Advertisement

EULER CHARACTERISTIC OF SPRINGER FIBERS

Article

Abstract

For Weyl groups of classical types, we present formulas to calculate the restriction of Springer representations to a maximal parabolic subgroup of the same type. As a result, we give recursive formulas for Euler characteristics of Springer fibers for classical types. We also give tables of those for exceptional types.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993.MATHGoogle Scholar
  2. 2.
    C. de Concini, G. Lusztig, C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), no. 1, 15–34.Google Scholar
  3. 3.
    M. Ehrig, C. Stroppel, 2-row Springer fibres and Khovanov diagram algebras for type D, Canad. J. Math. 68 (2016), no. 6, 1285––1333.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    L. Fresse, Betti numbers of Springer fibers in type A, J. Algebra 322 (2009), 2566 – 2579.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    L. Fresse, A unified approach on Springer fibers in the hook, two-row and two-column cases, Transform. Groups 15 (2010), 285 – 331.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    F. Y. Fung, On the topology of components of some Springer fibers and their relation to KazhdanLusztig theory, Adv. Math. 178 (2003), 244 – 276.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    R. Hotta, T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), no. 2, 113–127.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    R. Hotta, N. Shimomura, The fixed point subvarieties of unipotent transformations on generalized ag varieties and the Green functions: Combinatorial and cohomological treatments centering GL n, Math. Ann. 241 (1979), 193–208.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M. Khovanov, Crossingless matchings and the cohomology of (n, n) Springer varieties, Commun. Contemp. Math. 6 (2004), 561–577.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    F. Lübeck, Tables of Green functions for exceptional groups, available at http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/Green/index.html.
  11. 11.
    G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. Math. 42 (1981), 169–178.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    G. Lusztig, Character sheaves, V, Adv. Math. 61 (1986), 103–155.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    G. Lusztig, An induction theorem for Springer’s representations, in: Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., Vol. 40, 2004, pp. 253–259.Google Scholar
  14. 14.
    J. S. Milne, Étale Cohomology, Princeton Mathematical Series, Princeton University Press, Princeton, 1980.Google Scholar
  15. 15.
    H. M. Russell, A topological construction for all two-row Springer varieties, Pacific J. Math. 253 (2011), no. 1, 221 – 255.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    N. Shimomura, A theorem on the fixed point set of a unipotent transformation on the ag manifold, J. Math. Soc. Japan 32 (1980), no. 1, 55–64.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    T. Shoji, On the Springer representations of the Weyl groups of classical algebraic groups, Comm. Algebra 7 (1979), no. 16, 1713–1745.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    T. Shoji, On the Green polynomials of classical groups, Invent. Math. 74 (1983), 239–267.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    N. Spaltenstein, Classes Unipotentes et Sous-groupes de Borel, Lecture Notes in Mathematics, Vol. 946, Springer-Verlag Berlin, 1982.Google Scholar
  20. 20.
    T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    B. Srinivasan, Green polynomials of finite classical groups, Comm. Algebra 5 (1977), no. 12, 1241–1258.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1986.Google Scholar
  23. 23.
    C. Stroppel, B. Webster, 2-block Springer fibers: convolution algebras and coherent sheaves, Comment. Math. Helv. 87 (2012), no. 2, 477–520.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    M. A. A. van Leeuwen, A RobinsonSchensted algorithm in the geometry of flags for classical groups, Ph.D. thesis, Rijksuniversiteit te Utrecht, 1989, available at http://wwwmathlabo.univ-poitiers.fr/~maavl/pdf/thesis.pdf.
  25. 25.
    A. Wilbert, Topology of two-row Springer fibers for the even orthogonal and symplectic group, Trans. Amer. Math. Soc. 370 (2018), 2707–2737.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    A. Wilbert, Two-block Springer fibers of types C and D: a diagrammatic approach to Springer theory, arXiv:1611.09828 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsMITCambridgeUSA

Personalised recommendations