TRACES OF INTERTWINERS FOR QUANTUM AFFINE ALGEBRAS AND DIFFERENCE EQUATIONS (AFTER ETINGOF–SCHIFFMANN–VARCHENKO)

Article
  • 5 Downloads

Abstract

We modify and give complete proofs for the results of Etingof–Schiffmann–Varchenko in [ESV02] on traces of intertwiners of untwisted quantum affine algebras in the opposite coproduct and the standard grading. More precisely, we show that certain normalized generalized traces \( {F}^{V_1,\dots, {V}_n}\left({z}_1,\dots, {z}_n;\uplambda, \omega, \mu, k\right) \) for \( {U}_q\left(\widehat{\mathfrak{g}}\right) \) solve four commuting systems of q-difference equations: the Macdonald–Ruijsenaars, dual Macdonald–Ruijsenaars, q-KZB, and dual q-KZB equations. In addition, we show a symmetry property for these renormalized trace functions. Our modifications are motivated by their appearance in the recent work [Sun16].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ABRR98]
    D. Arnaudon, E. Buffenoir, E. Ragoucy, P. Roche, Universal solutions of quantum dynamical Yang–Baxter equations, Lett. Math. Phys. 44 (1998), no. 3, 201214.CrossRefMATHMathSciNetGoogle Scholar
  2. [Dri89]
    В. Г. Дринфельд, О почти коммутативных алгебрах Хопфа, Алгебра и анализ 1 (1989), вьш. 2, 3046. V. Drinfeld, On almost cocommutative Hopf algebras, Leningrad Math. J. 1(1990), no. 2, 321342.Google Scholar
  3. [EFK98]
    P. Etingof, I. Frenkel, A. Kirillov Jr., Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations, Mathematical Surveys and Monographs, Vol. 58, American Mathematical Society, Providence, RI, 1998.Google Scholar
  4. [EL05]
    P. Etingof, F. Latour, The Dynamical Yang–Baxter Equation, Representation Theory, and Quantum Integrable Systems, Oxford Lecture Series in Mathematics and its Applications, Vol. 29, Oxford University Press, Oxford, 2005.Google Scholar
  5. [ES99]
    P. Etingof, O. Schiffmann, Twisted traces of intertwiners for Kac–Moody algebras and classical dynamical R-matrices corresponding to generalized Belavin-Drinfeld triples, Math. Res. Lett. 6 (1999), no. 5-6, 593612.CrossRefMATHMathSciNetGoogle Scholar
  6. [ES01]
    P. Etingof, O. Schiffmann, Twisted traces of quantum intertwiners and quantum dynamical R-matrices corresponding to generalized Belavin–Drinfeld triples, Comm. Math. Phys. 218 (2001), no. 3, 633663.CrossRefMATHMathSciNetGoogle Scholar
  7. [ESV02]
    P. Etingof, O. Schiffmann, A. Varchenko, Traces of intertwiners for quantum groups and difference equations, II, Lett. Math. Phys. 62 (2002), no. 2, 143158.CrossRefMATHMathSciNetGoogle Scholar
  8. [Eti94]
    P. Etingof, Representations of affine Lie algebras, elliptic r-matrix systems, and special functions, Comm. Math. Phys. 159 (1994), no. 3, 471502.CrossRefMATHMathSciNetGoogle Scholar
  9. [Eti95]
    P. Etingof, Central elements for quantum affine algebras and affine Macdonald's operators, Math. Res. Lett. 2 (1995), no. 5, 611628.CrossRefMATHMathSciNetGoogle Scholar
  10. [EV00]
    P. Etingof, A. Varchenko, Traces of intertwiners for quantum groups and difference equations, I, Duke Math. J. 104 (2000), no. 3, 391432.CrossRefMATHMathSciNetGoogle Scholar
  11. [Fel95]
    G. Felder, Conformal field theory and integrable systems associated to elliptic curves, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, pp. 12471255.Google Scholar
  12. [FR92]
    I. Frenkel, N. Reshetikhin, Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), no. 1, 160.CrossRefMATHMathSciNetGoogle Scholar
  13. [FTV97]
    G. Felder, V. Tarasov, A. Varchenko, Solutions of the elliptic q-KZB equations and Bethe ansatz. I, in: Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2, Vol. 180, Amer. Math. Soc., Providence, RI, 1997, pp. 4575.Google Scholar
  14. [FTV99]
    G. Felder, V. Tarasov, A. Varchenko, Monodromy of solutions of the elliptic quantum Knizhnik–Zamolodchikov–Bernard difference equations, Internat. J. Math. 10 (1999), no. 8, 943975.CrossRefMATHMathSciNetGoogle Scholar
  15. [FV02]
    G. Felder, A. Varchenko, q-deformed KZB heat equation: completeness, modular properties and SL(3, ℤ), Adv. Math. 171 (2002), no. 2, 228275.CrossRefMATHMathSciNetGoogle Scholar
  16. [Kon94]
    H. Konno, Free-field representation of the quantum affine algebra \( {U}_q\left({\widehat{\mathfrak{sl}}}_2\right) \) and form factors in the higher-spin XXZ model, Nuclear Phys. B 432 (1994), no. 3, 457486.CrossRefMATHMathSciNetGoogle Scholar
  17. [KQS93]
    A. Kato, Y. Quano, J. Shiraishi, Free boson representation of q-vertex operators and their correlation functions, Comm. Math. Phys. 157 (1993), no. 1, 119137.CrossRefMATHMathSciNetGoogle Scholar
  18. [Lus10]
    G. Lusztig, Introduction to Quantum Groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010.Google Scholar
  19. [Mat94]
    A. Matsuo, A q-deformation of Wakimoto modules, primary fields and screening operators, Comm. Math. Phys. 160 (1994), no. 1, 3348.CrossRefMATHMathSciNetGoogle Scholar
  20. [Sun16]
    Y. Sun, Traces of intertwiners for quantum affine sl2 and Felder–Varchenko functions, Comm. Math. Phys. 347 (2016), no. 2, 573653.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations