Advertisement

Transformation Groups

, Volume 23, Issue 2, pp 299–327 | Cite as

ON THE IRREDUCIBLE COMPONENTS OF MODULI SCHEMES FOR AFFINE SPHERICAL VARIETIES

  • ROMAN AVDEEVEmail author
  • STÉPHANIE CUPIT-FOUTOU
Article

Abstract

We give a combinatorial description of all affine spherical varieties with prescribed weight monoid Г. As an application, we obtain a characterization of the irreducible components of Alexeev and Brion’s moduli scheme MГ for such varieties. Moreover, we find several sufficient conditions for MГ to be irreducible and exhibit several examples where MГ is reducible. Finally, we provide examples of non-reduced MГ.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB05]
    V. Alexeev, M. Brion, Moduli of affine schemes with reductive group action, J. Algebraic Geom. 14 (2005), no. 1, 83–117.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [AB06]
    V. Alexeev, M. Brion, Stable spherical varieties and their moduli, IMRP Int. Math. Res. Pap. 2006, Art. ID 46293, 57 pp.Google Scholar
  3. [ACF15]
    R. Avdeev, S. Cupit-Foutou, New and old results on spherical varieties via moduli theory, arXiv:1508.00268v2 [math.AG](2015), submitted for publication.Google Scholar
  4. [Bo68]
    N. Bourbaki, Groupes et Algébres de Lie, Chap. IV, V, VI, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.Google Scholar
  5. [BCF08]
    P. Bravi, S. Cupit-Foutou, Equivariant deformations of the affine multicone over a ag variety, Adv. Math. 217 (2008), no. 6, 2800–2821.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BL11]
    P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type F4, J. Algebra 329 (2011), 4–51.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [BP14]
    P. Bravi, G. Pezzini, Wonderful subgroups of reductive groups and spherical systems, J. Algebra 409 (2014), 101–147.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [BvS16]
    P. Bravi, B. Van Steirteghem, The moduli scheme of affine spherical varieties with a free weight monoid, Int. Math. Res. Not. IMRN 2016, no. 15, 4544–4587.Google Scholar
  9. [Br90]
    M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), no. 1, 115–143.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Br13]
    M. Brion, Invariant Hilbert schemes, in: Handbook of Moduli, Vol. I, Adv. Lect. Math. (ALM) 24, Int. Press, Somerville, MA, 2013, pp. 64–117.Google Scholar
  11. [BP87]
    M. Brion, F. Pauer, Valuations des espaces homogènes sphériques, Comment. Math. Helv. 62 (1987), no. 2, 265–285.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Cu14]
    S. Cupit-Foutou, Wonderful varieties: a geometrical realization, arXiv:0907. 2852v4 [math.AG](2014), submitted for publication.Google Scholar
  13. [CLS11]
    D. A. Cox, J. B. Little, H. K. Schenck, Toric Varieties, Graduate Studies in Mathematics, Vol. 124, American Mathematical Society, Providence, RI, 2011.Google Scholar
  14. [Ja07]
    S. Jansou, Déformations des cônes de vecteurs primitifs, Math. Ann. 338 (2007), no. 3, 627–667.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [KKMS73]
    G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Mathematics, Vol. 339, Springer, Berlin, 1973.Google Scholar
  16. [Kn91]
    F. Knop, The Luna-Vust theory of spherical embeddings, in: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, India, 1989), Manoj Prakashan, Madras, 1991, pp. 225–249.Google Scholar
  17. [Kn94]
    F. Knop, The asymptotic behavior of invariant collective motion, Invent. math. 116 (1994), no. 1–3, 309–328.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Kn96]
    F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Lo09a]
    I. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), no. 2, 315–343.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Lo09b]
    I. V. Losev, Proof of the Knop conjecture, Ann. Inst. Fourier 59 (2009), no. 3, 1105–1134.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Lu97]
    D. Luna, Grosses cellules pour les variétés sphériques, in: Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 267–280.Google Scholar
  22. [Lu01]
    D. Luna, Variétés sphériques de type A, Inst. Hautes Études Sci. Publ. Math. 94 (2001), 161–226.CrossRefzbMATHGoogle Scholar
  23. [LV83]
    D. Luna, Th. Vust, Plongements d'espaces homogènes, Comment. Math. Helv. 58 (1983), no. 2, 186–245.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [PvS12]
    S. A. Papadakis, B. Van Steirteghem, Equivariant degenerations of spherical modules for groups of type A, Ann. Inst. Fourier 62 (2012), no. 5, 1765–1809.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [PvS16]
    S. A. Papadakis, B. Van Steirteghem, Equivariant degenerations of spherical modules: part II, Algebr. Represent. Theory 19 (2016), no. 5, 1135–1171.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [Pe17]
    G. Pezzini, Spherical varieties: applications and generalizations, in: Representation Theory—Current Trends and Perspectives, EMS Series of Congress Reports, EMS, Zürich, 2017, pp. 603–612.Google Scholar
  27. [Po86]
    В. Л. Попов, Стягивание действий редуктивных алгебраических групп, Математический сборник 130(172) (1986), Вьш. 3(7), 310–334. Engl. transl.: V. L. Popov, Contraction of the actions of reductive algebraic groups, Math. USSR-Sb. 58 (1987), no. 2, 311–335.Google Scholar
  28. [PV94]
    Э. Б. Винберг, В. Л. Попов, Теория инвариантов Алгебраическая геометрия-4, Итоги науки и теxн., серия Современные проблемы Математически, фундаменталые направления, том 55, ВИНИТИ, M., 1989, 137–309. Engl. transl.: V. L. Popov, E. B. Vinberg, Invariant theory, in: Algebraic Geometry, IV, Encyclopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123-278.Google Scholar
  29. [Ro61]
    M. Rosenlicht, Toroidal algebraic groups, Proc. Amer. Math. Soc. 12 (1961), no. 6, 984–988.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [Ti11]
    D. A. Timashev, Homogeneous Spaces and Equivariant Embeddings, Encycl. Math. Sci., Vol. 138, Springer-Verlag, Berlin, 2011.Google Scholar
  31. [VK78]
    Э Б. Винберг, Б. Н. Кимельфельд, Однородные области на флаговых многообразиях и сферические подгруппы полупростых групп Ли, Функц. аналилз и его прил. 12 (1978), вьш. 3, 12–19. Engl. transl.: E. B. Vinberg, B. N. Kimel’fel’d, Homogeneous domains on ag manifolds and spherical subgroups of semisimple Lie groups, Funct. Anal. Appl. 12 (1978), no. 3, 168–174.Google Scholar
  32. [VP72]
    Э. Б. Винберг, В. Л. Попов, Об одном классе квазиоднородных аффинных алгебраических многообразий, Изв. АН СССР. Сер. матем. 34 (1972), vyp. 4, 749–764. Engl. transl.: E. B. Vinberg, V. L. Popov, On a class of quasihomogeneous affine varieties, Math. USSR-Izv. 6 (1972), no. 4, 743–758.Google Scholar
  33. [Vu76]
    Th. Vust, Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, 1–31.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Higher School of EconomicsNational Research UniversityMoscowRussia
  2. 2.Ruhr-Universität BochumBochumGermany

Personalised recommendations