Transformation Groups

, Volume 22, Issue 2, pp 537–557 | Cite as

HIRZEBRUCH CLASS AND BIA LYNICKI-BIRULA DECOMPOSITION

Open Access
Article

Abstract

We establish a relation between Bia lynicki-Birula decomposition for ℂ*- action and the Atiyah-Bott-Berline-Vergne localization formula.

References

  1. [1]
    M. F. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc. 72 (1966), 245-250.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. F. Atiyah, I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604.Google Scholar
  3. [3]
    M. F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    P. F. Baum, R. Bott, On the zeros of meromorphic vector-fields, in: Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 29-47.Google Scholar
  5. [5]
    N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Grundlehren der Mathematischen Wissenschaften, Vol. 298, Springer-Verlag, Berlin, 1992.CrossRefMATHGoogle Scholar
  6. [6]
    N. Berline, M. Vergne, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9, 539-541.Google Scholar
  7. [7]
    A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480-497.Google Scholar
  8. [8]
    A. Białynicki-Birula, On fixed points of torus actions on projective varieties, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1097-1101.MathSciNetMATHGoogle Scholar
  9. [9]
    A. Białynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 9, 667-674.MathSciNetMATHGoogle Scholar
  10. [10]
    E. Bierstone, P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207-302.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    F. Bittner, The universal Euler characteristic for varieties of characteristic zero, Compos. Math. 140 (2004), no. 4, 1011-1032.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    A. Borel, Seminar on Transformation Groups, with contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, NJ, 1960.Google Scholar
  13. [13]
    R. Bott, Nondegenerate critical manifolds, Ann. of Math. (2) 60 (1954), 248-261.Google Scholar
  14. [14]
    J.-P. Brasselet, J. Schürmann, S. Yokura, Hirzebruch classes and motivic Chern classes for singular spaces, J. Topol. Anal. 2 (2010), no. 1, 1-55.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    M. Brion, M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. reine angew. Math. 482 (1997), 67-92.MathSciNetMATHGoogle Scholar
  16. [16]
    P. Brosnan, On motivic decompositions arising from the method of Bia lynicki-Birula, Invent. Math. 161 (2005), no. 1, 91-111.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    J. B. Carrell, R. M. Goresky, A decomposition theorem for the integral homology of a variety, Invent. Math. 73 (1983), no. 3, 367-381.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    J. B. Carrell, A. J. Sommese, Some topological aspects of C* actions on compact Kaehler manifolds, Comment. Math. Helv. 54 (1979), no. 4, 567-582.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    T. Chang, T. Skjelbred, The topological Schur lemma and related results, Ann. of Math. (2) 100 (1974), 307-321.Google Scholar
  20. [20]
    D. Edidin, W. Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998), no. 3, 619-636.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    T. Frankel, Fixed points and torsion on Kähler manifolds, Ann. of Math. (2) 70 (1959), 1-8.Google Scholar
  22. [22]
    W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, Vol. 131, Princeton University Press, Princeton, NJ, 1993.Google Scholar
  23. [23]
    W. Fulton, Intersection Theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol. 2, Springer-Verlag, Berlin, 1998.Google Scholar
  24. [24]
    M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25-83.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.MATHGoogle Scholar
  26. [26]
    F. Hirzebruch, Neue Topologische Methoden in der Algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956.Google Scholar
  27. [27]
    D. Husemoller, Fibre Bundles, 3rd ed., Graduate Texts in Mathematics, Vol. 20, Springer-Verlag, New York, 1994.Google Scholar
  28. [28]
    D. Huybrechts, Complex Geometry, an Introduction, Universitext, Springer-Verlag, Berlin, 2005.Google Scholar
  29. [29]
    L. C. Jeffrey, F. C. Kirwan, Localization and the quantization conjecture, Topology 36 (1997), no. 3, 647-693.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, Vol. 31, Princeton University Press, Princeton, NJ, 1984.Google Scholar
  31. [31]
    M. Mikosz, A. Weber, Equivariant Hirzebruch class for quadratic cones via degenerations, J. Singul. 12 (2015), 131-140.MathSciNetMATHGoogle Scholar
  32. [32]
    O. R. Musin, On rigid Hirzebruch genera, Mosc. Math. J. 11 (2011), no. 1, 139-147, 182.Google Scholar
  33. [33]
    D. Quillen, The spectrum of an equivariant cohomology ring. I, Ann. of Math. (2) 94 (1971), 549-572.Google Scholar
  34. [34]
    G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151.CrossRefMATHGoogle Scholar
  35. [35]
    P. A. Smith, A theorem on fixed points for periodic transformations, Ann. of Math. (2) 35 (1934), no. 3, 572-578.Google Scholar
  36. [36]
    H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    B. Totaro, The elliptic genus of a singular variety, in: Elliptic Cohomology, London Math. Soc. Lecture Note Ser., Vol. 342, Cambridge Univ. Press, Cambridge, 2007, pp. 360-364.Google Scholar
  38. [38]
    M. Vergne, Applications of equivariant cohomology, International Congress of Mathematicians, Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 635-664.Google Scholar
  39. [39]
    A. Weber, Equivariant Hirzebruch class for singular varieties, Selecta Math., published online http://link.springer.com/article/10.1007/s00029-015-0214-x.Google Scholar
  40. [40]
    E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), no. 4, 661-692 (1983).Google Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsWarsaw UniversityWarszawaPoland
  2. 2.Institute of MathematicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations