Transformation Groups

, Volume 22, Issue 2, pp 537–557 | Cite as


Open Access


We establish a relation between Bia lynicki-Birula decomposition for ℂ*- action and the Atiyah-Bott-Berline-Vergne localization formula.


  1. [1]
    M. F. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc. 72 (1966), 245-250.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. F. Atiyah, I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604.Google Scholar
  3. [3]
    M. F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    P. F. Baum, R. Bott, On the zeros of meromorphic vector-fields, in: Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 29-47.Google Scholar
  5. [5]
    N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Grundlehren der Mathematischen Wissenschaften, Vol. 298, Springer-Verlag, Berlin, 1992.CrossRefMATHGoogle Scholar
  6. [6]
    N. Berline, M. Vergne, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9, 539-541.Google Scholar
  7. [7]
    A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480-497.Google Scholar
  8. [8]
    A. Białynicki-Birula, On fixed points of torus actions on projective varieties, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1097-1101.MathSciNetMATHGoogle Scholar
  9. [9]
    A. Białynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 9, 667-674.MathSciNetMATHGoogle Scholar
  10. [10]
    E. Bierstone, P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207-302.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    F. Bittner, The universal Euler characteristic for varieties of characteristic zero, Compos. Math. 140 (2004), no. 4, 1011-1032.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    A. Borel, Seminar on Transformation Groups, with contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, NJ, 1960.Google Scholar
  13. [13]
    R. Bott, Nondegenerate critical manifolds, Ann. of Math. (2) 60 (1954), 248-261.Google Scholar
  14. [14]
    J.-P. Brasselet, J. Schürmann, S. Yokura, Hirzebruch classes and motivic Chern classes for singular spaces, J. Topol. Anal. 2 (2010), no. 1, 1-55.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    M. Brion, M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. reine angew. Math. 482 (1997), 67-92.MathSciNetMATHGoogle Scholar
  16. [16]
    P. Brosnan, On motivic decompositions arising from the method of Bia lynicki-Birula, Invent. Math. 161 (2005), no. 1, 91-111.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    J. B. Carrell, R. M. Goresky, A decomposition theorem for the integral homology of a variety, Invent. Math. 73 (1983), no. 3, 367-381.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    J. B. Carrell, A. J. Sommese, Some topological aspects of C* actions on compact Kaehler manifolds, Comment. Math. Helv. 54 (1979), no. 4, 567-582.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    T. Chang, T. Skjelbred, The topological Schur lemma and related results, Ann. of Math. (2) 100 (1974), 307-321.Google Scholar
  20. [20]
    D. Edidin, W. Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998), no. 3, 619-636.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    T. Frankel, Fixed points and torsion on Kähler manifolds, Ann. of Math. (2) 70 (1959), 1-8.Google Scholar
  22. [22]
    W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, Vol. 131, Princeton University Press, Princeton, NJ, 1993.Google Scholar
  23. [23]
    W. Fulton, Intersection Theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol. 2, Springer-Verlag, Berlin, 1998.Google Scholar
  24. [24]
    M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25-83.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.MATHGoogle Scholar
  26. [26]
    F. Hirzebruch, Neue Topologische Methoden in der Algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956.Google Scholar
  27. [27]
    D. Husemoller, Fibre Bundles, 3rd ed., Graduate Texts in Mathematics, Vol. 20, Springer-Verlag, New York, 1994.Google Scholar
  28. [28]
    D. Huybrechts, Complex Geometry, an Introduction, Universitext, Springer-Verlag, Berlin, 2005.Google Scholar
  29. [29]
    L. C. Jeffrey, F. C. Kirwan, Localization and the quantization conjecture, Topology 36 (1997), no. 3, 647-693.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, Vol. 31, Princeton University Press, Princeton, NJ, 1984.Google Scholar
  31. [31]
    M. Mikosz, A. Weber, Equivariant Hirzebruch class for quadratic cones via degenerations, J. Singul. 12 (2015), 131-140.MathSciNetMATHGoogle Scholar
  32. [32]
    O. R. Musin, On rigid Hirzebruch genera, Mosc. Math. J. 11 (2011), no. 1, 139-147, 182.Google Scholar
  33. [33]
    D. Quillen, The spectrum of an equivariant cohomology ring. I, Ann. of Math. (2) 94 (1971), 549-572.Google Scholar
  34. [34]
    G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151.CrossRefMATHGoogle Scholar
  35. [35]
    P. A. Smith, A theorem on fixed points for periodic transformations, Ann. of Math. (2) 35 (1934), no. 3, 572-578.Google Scholar
  36. [36]
    H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    B. Totaro, The elliptic genus of a singular variety, in: Elliptic Cohomology, London Math. Soc. Lecture Note Ser., Vol. 342, Cambridge Univ. Press, Cambridge, 2007, pp. 360-364.Google Scholar
  38. [38]
    M. Vergne, Applications of equivariant cohomology, International Congress of Mathematicians, Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 635-664.Google Scholar
  39. [39]
    A. Weber, Equivariant Hirzebruch class for singular varieties, Selecta Math., published online Scholar
  40. [40]
    E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), no. 4, 661-692 (1983).Google Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsWarsaw UniversityWarszawaPoland
  2. 2.Institute of MathematicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations