Transformation Groups

, Volume 21, Issue 3, pp 803–819 | Cite as

HIGHER DIRAC COHOMOLOGY OF MODULES WITH GENERALIZED INFINITESIMAL CHARACTER

Article

Abstract

We modify the definition of Dirac cohomology in such a way that the standard properties of the usual Dirac cohomology, valid for modules with infinitesimal character, become valid also for modules with only generalized infinitesimal character.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BP1]
    D. Barbasch, P. Pandžić, Dirac cohomology and unipotent representations of complex groups, in: Noncommutative Geometry and Global Analysis, A. Connes, A. Gorokhovsky, M. Lesch, M. Paum, B. Rangipour eds., Contemp. Math., Vol. 546, Amer. Math. Soc., Providence, RI, 2011, pp. 1-22.Google Scholar
  2. [BP2]
    D. Barbasch, P. Pandžić, Dirac cohomology of unipotent representations of Sp(2n; ℝ) and U(p, q), J. Lie Theory 25 (2015), no. 1, 185-213.MathSciNetMATHGoogle Scholar
  3. [DH]
    C.-P. Dong, J.-S. Huang, Jacquet modules and Dirac cohomology, Adv. Math. 226 (2011), 2911-2934.MathSciNetCrossRefMATHGoogle Scholar
  4. [DV]
    M. Dubois-Violette, d N = 0: Generalized homology, K-Theory 14 (1998), 371-404.MathSciNetCrossRefMATHGoogle Scholar
  5. [G]
    S. Goette, Equivariant η-invariants on homogeneous spaces, Math. Z. 232 (1998), 1-42.MathSciNetCrossRefMATHGoogle Scholar
  6. [HKP]
    J.-S. Huang, Y.-F. Kang, P. Pandžić, Dirac cohomology of some Harish-Chandra modules, Transform. Groups 14 (2009), 163-173.MathSciNetCrossRefMATHGoogle Scholar
  7. [HP1]
    J.-S. Huang, P. Pandžić, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185-202.MathSciNetCrossRefMATHGoogle Scholar
  8. [HP2]
    J.-S. Huang, P. Pandžić, Dirac Operators in Representation Theory, Mathematics: Theory and Applications, Birkhäuser Boston, Boston, MA, 2006.Google Scholar
  9. [HPP]
    J.-S. Huang, P. Pandžić, V. Protsak, Dirac cohomology of Wallach representations, Pacific J. Math. 250 (2011), no. 1, 163-190.MathSciNetCrossRefMATHGoogle Scholar
  10. [HPR]
    J.-S. Huang, P. Pandžić, D. Renard, Dirac operators and Lie algebra cohomology, Represent. Theory 10 (2006), 299-313.MathSciNetCrossRefMATHGoogle Scholar
  11. [HX]
    J.-S. Huang, W. Xiao, Dirac cohomology of highest weight modules, Selecta Math. (N.S.) 18 (2012), no. 4, 803-824.Google Scholar
  12. [KW]
    C. Kassel, M. Wambst, Algèbre homologique des N-complexes et homologie de Hochshild aux racines de l’unitè, Publ. Res. Inst. Math. Sci. Kyoto University 34 (1998), no. 2, 91-114.MathSciNetCrossRefMATHGoogle Scholar
  13. [KOSS1]
    T. Kobayashi, B. Ørsted, P. Somberg, V. Souček, Branching laws for Verma modules and applications in parabolic geometry I, Adv. Math. 285 (2015), 1796-1852.MathSciNetCrossRefMATHGoogle Scholar
  14. [KOSS2]
    T. Kobayashi, B. Ørsted, P. Somberg, V. Souček, Branching laws for Verma modules and applications in parabolic geometry II (2013), preprint.Google Scholar
  15. [K1]
    B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999),447-501.MathSciNetCrossRefMATHGoogle Scholar
  16. [K2]
    B. Kostant, Dirac cohomology for the cubic Dirac operator, in: Studies in Memory of Issai Schur, Chevaleret/Rehovot, 2000, Progress in Mathematics, Vol. 210, Birkhauser Boston, Boston, MA, 2003, pp. 69-93.Google Scholar
  17. [MPV]
    S. Mehdi, P. Pandžić, D. Vogan, Translation principle for Dirac index (2014), preprint.Google Scholar
  18. [PS1]
    P. Pandžić, P. Somberg, Branching problems and \( \mathfrak{s}\mathfrak{l} \)(2; ℂ)-actions, Arch. Math. (Brno), to appear.Google Scholar
  19. [PS2]
    P. Pandžić, P. Somberg, Higher Dirac cohomology and branching problems for generalized Verma modules, in preparation.Google Scholar
  20. [P1]
    R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1-30.MathSciNetCrossRefMATHGoogle Scholar
  21. [P2]
    R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. 89 (1980), 1-24.MathSciNetCrossRefMATHGoogle Scholar
  22. [V]
    D. Vogan, Dirac operators and unitary representations, three talks at MIT Lie groups seminar, Fall 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ZagrebZagrebCroatia
  2. 2.Mathematical Institute MFF UKPrahaCzech Republic

Personalised recommendations