Transformation Groups

, Volume 21, Issue 3, pp 803–819 | Cite as




We modify the definition of Dirac cohomology in such a way that the standard properties of the usual Dirac cohomology, valid for modules with infinitesimal character, become valid also for modules with only generalized infinitesimal character.


Dirac Operator Short Exact Sequence Cartan Subalgebra Spin Module Verma Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BP1]
    D. Barbasch, P. Pandžić, Dirac cohomology and unipotent representations of complex groups, in: Noncommutative Geometry and Global Analysis, A. Connes, A. Gorokhovsky, M. Lesch, M. Paum, B. Rangipour eds., Contemp. Math., Vol. 546, Amer. Math. Soc., Providence, RI, 2011, pp. 1-22.Google Scholar
  2. [BP2]
    D. Barbasch, P. Pandžić, Dirac cohomology of unipotent representations of Sp(2n; ℝ) and U(p, q), J. Lie Theory 25 (2015), no. 1, 185-213.MathSciNetzbMATHGoogle Scholar
  3. [DH]
    C.-P. Dong, J.-S. Huang, Jacquet modules and Dirac cohomology, Adv. Math. 226 (2011), 2911-2934.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [DV]
    M. Dubois-Violette, d N = 0: Generalized homology, K-Theory 14 (1998), 371-404.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [G]
    S. Goette, Equivariant η-invariants on homogeneous spaces, Math. Z. 232 (1998), 1-42.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [HKP]
    J.-S. Huang, Y.-F. Kang, P. Pandžić, Dirac cohomology of some Harish-Chandra modules, Transform. Groups 14 (2009), 163-173.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [HP1]
    J.-S. Huang, P. Pandžić, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185-202.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [HP2]
    J.-S. Huang, P. Pandžić, Dirac Operators in Representation Theory, Mathematics: Theory and Applications, Birkhäuser Boston, Boston, MA, 2006.Google Scholar
  9. [HPP]
    J.-S. Huang, P. Pandžić, V. Protsak, Dirac cohomology of Wallach representations, Pacific J. Math. 250 (2011), no. 1, 163-190.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [HPR]
    J.-S. Huang, P. Pandžić, D. Renard, Dirac operators and Lie algebra cohomology, Represent. Theory 10 (2006), 299-313.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [HX]
    J.-S. Huang, W. Xiao, Dirac cohomology of highest weight modules, Selecta Math. (N.S.) 18 (2012), no. 4, 803-824.Google Scholar
  12. [KW]
    C. Kassel, M. Wambst, Algèbre homologique des N-complexes et homologie de Hochshild aux racines de l’unitè, Publ. Res. Inst. Math. Sci. Kyoto University 34 (1998), no. 2, 91-114.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [KOSS1]
    T. Kobayashi, B. Ørsted, P. Somberg, V. Souček, Branching laws for Verma modules and applications in parabolic geometry I, Adv. Math. 285 (2015), 1796-1852.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [KOSS2]
    T. Kobayashi, B. Ørsted, P. Somberg, V. Souček, Branching laws for Verma modules and applications in parabolic geometry II (2013), preprint.Google Scholar
  15. [K1]
    B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999),447-501.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [K2]
    B. Kostant, Dirac cohomology for the cubic Dirac operator, in: Studies in Memory of Issai Schur, Chevaleret/Rehovot, 2000, Progress in Mathematics, Vol. 210, Birkhauser Boston, Boston, MA, 2003, pp. 69-93.Google Scholar
  17. [MPV]
    S. Mehdi, P. Pandžić, D. Vogan, Translation principle for Dirac index (2014), preprint.Google Scholar
  18. [PS1]
    P. Pandžić, P. Somberg, Branching problems and \( \mathfrak{s}\mathfrak{l} \)(2; ℂ)-actions, Arch. Math. (Brno), to appear.Google Scholar
  19. [PS2]
    P. Pandžić, P. Somberg, Higher Dirac cohomology and branching problems for generalized Verma modules, in preparation.Google Scholar
  20. [P1]
    R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1-30.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [P2]
    R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. 89 (1980), 1-24.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [V]
    D. Vogan, Dirac operators and unitary representations, three talks at MIT Lie groups seminar, Fall 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ZagrebZagrebCroatia
  2. 2.Mathematical Institute MFF UKPrahaCzech Republic

Personalised recommendations