Transformation Groups

, Volume 21, Issue 1, pp 275–295 | Cite as




Let k be an arbitrary field of characteristic zero. In this paper we study quotients of k-rational conic bundles over Open image in new window by finite groups of automorphisms. We construct smooth minimal models for such quotients. We show that any quotient is birationally equivalent to a quotient of other k-rational conic bundle cyclic group \( {\mathrm{\mathfrak{C}}}_{2^k} \) of order 2 k , dihedral group \( {\mathfrak{D}}_{2^k} \) of order 2 k , alternating group \( {\mathfrak{A}}_4 \) of degree 4, symmetric group \( {\mathfrak{S}}_4 \) of degree 4 or alternating group \( {\mathfrak{A}}_5 \) of degree 5 effectively acting on the base of the conic bundle. Also we construct infinitely many examples of such quotients which are not k-birationally equivalent to each other.


Galois Group Characteristic Zero Rational Curf Pezzo Surface Rational Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Al94]
    V. Alexeev, Boundedness and K 2 for log surfaces, Internat. J. Math. 5 (1996), no. 6, 779–810.Google Scholar
  2. [B96]
    A. Beauville, Complex Algebraic Surfaces, 2nd ed., London Mathematical Society Students Texts, Vol. 34, Cambridge University Press, Cambridge, 1996.Google Scholar
  3. [Bl17]
    H. F. Blichfeldt, Finite Collineation Groups, The Univ. Chicago Press, Chicago, 1917.Google Scholar
  4. [Cast94]
    G. Castelnuovo, Sulla razionalità delle involuzioni piane, Math. Ann. 44 (1894), 125–155.Google Scholar
  5. [DI09a]
    I. V. Dolgachev, V. A. Iskovskikh, Finite subgroups of the plane Cremona group, in: Algebra, Arithmetic, and Geometry, in honor of Yu. I. Manin, Vol. I, Progress in Mathematics, Vol. 269, Birkhäuser, Basel, 2009, pp. 443–548.Google Scholar
  6. [DI09b]
    I. V. Dolgachev, V. A. Iskovskikh, On elements of prime order in the plane Cremona group over a perfect field, Int. Math. Res. Not. IMRN 18 (2009), 3467–3485.Google Scholar
  7. [Isk67]
    В. А. Псковских Рациональные поверхности с пучком рациональных кривых, Матем. сб. 74(116) (1967), no. 4, 608–638. Engl. transl.: V. A. Iskovskikh, Rational surfaces with a pencil of rational curves, Math. USSR sb. 3 (1967), no. 4, 563–587.Google Scholar
  8. [Isk79]
    В. А. Псковских Минимальные модели рациональных поверхностей над произвольными полями, Изв. АН СССР, Сер. мат. 43 (1979), вьш. 1, 19–43. Engl. transl.: V. A. Iskovskikh, Minimal models of rational surfaces over arbitrary field, Math. USSR Izv. 14 (1980), no. 1, 17–39.Google Scholar
  9. [Isk96]
    В. А. Исковских Факторизация бирациональных отображений рациональных поверхностей с точки зрения теории Мори, УМН 51 (1996), вьш. 4(310), 3–72. Engl. transl.: V. A. Iskovskikh, Factorization of birational mappings of rational surfaces from the point of view of Mori theory, Russian Math. Surveys 51 (1996), no. 4, 585–652.Google Scholar
  10. [Lur76]
    J. Lüroth, Beweis eines Satzes tiber rationale Kurven, Math. Ann. 9 (1876), 163–165.Google Scholar
  11. [Man67]
    Ju. I. Manin, Rational surfaces over perfect fields. II, Math. Sb. 1 (1967), no. 2, 141–168.Google Scholar
  12. [Man74]
    Ю. И. Манин, Кубические формы: алгебра, геометрия, арифметика, Наука, М., 1972, Engl. transl.: Yu. I. Manin, Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Mathematical Library, Vol. 4, North-Holland, Amsterdam, American Elsevier, New York, 1974.Google Scholar
  13. [Ok10]
    T. Okada, Birational unboundedness of log terminal Q-Fano varieties and rationally connected strict Mori fiber spaces, Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 2010.Google Scholar
  14. [Pop14]
    V. L. Popov, Jordan groups and automorphism groups of algebraic varieties, in: Groups of Automorphisms in Birational and Affine Geometry (Trento, Italy, 2012), Springer Proceedings in Mathematics & Statistics, Vol. 79, 2014, 185–213.Google Scholar
  15. [Pr13]
    Yu. Prokhorov, On stable conjugacy of finite subgroups of the plane Cremona group, II, preprint, arXiv:1308.5698.Google Scholar
  16. [Spr77]
    T. A. Springer, Invariant Theory, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin, 1977. Russian transl.: Т. Спрингер, Теория инвариантов, сб. Математике, т. 24, Мир. М., 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Information Transmission ProblemsMoscowRussia
  2. 2.Laboratory of Algebraic GeometryNRU-HSEMoscowRussia

Personalised recommendations