Transformation Groups

, Volume 19, Issue 3, pp 793–852 | Cite as


  • L. KRAMEREmail author


We classify compact homogeneous geometries of irreducible spherical type and rank at least 2 which admit a transitive action of a compact connected group, up to equivariant 2-coverings. We apply our classification to polar actions on compact symmetric spaces.


Simple Complex Polar Space Coxeter Group Maximal Compact Subgroup Generalize Quadrangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Asch]
    M. Aschbacher, Finite geometries of type C 3 with flag-transitive groups, Geom. Dedicata 16 (1984), no. 2, 195–200.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [BeKa]
    A. Berenstein, M. Kapovich, Affine buildings for dihedral groups, Geom. Dedicata 156 (2012), 171–207.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [BoTi]
    A. Borel, J. Tits, Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499–571.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [Bred]
    G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972. Russian transl.: Г. Брeдон, Введение в теорю ком-пактных групп преобразований, Наука, M., 1980.Google Scholar
  5. [BrHa]
    M. R. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, Bd. 319, Springer, Berlin, 1999.Google Scholar
  6. [Brow]
    R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview, IL, 1971.zbMATHGoogle Scholar
  7. [Buek]
    F. Buekenhout, Foundations of incidence geometry, in: Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, pp. 63–105.Google Scholar
  8. [BuPa]
    F. Buekenhout, A. Pasini, Finite diagram geometries extending buildings, in: Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, pp. 1143–1254.Google Scholar
  9. [BuSp]
    K. Burns, R. Spatzier, On topological Tits buildings and their classification, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 5–34.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [Cart]
    É. Cartan, Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939), 335–367.CrossRefMathSciNetGoogle Scholar
  11. [CoOl]
    S. Console, C. Olmos, Clifford systems, algebraically constant second fundamental form and isoparametric hypersurfaces, Manuscr. Math. 97 (1998), no. 3, 335–342.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [Dad]
    J. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125–137.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [DoVa]
    M. Dominguez-Vazquez, Isoparametric foliations on complex projective spaces, arXiv:1204.3428v1 [math.DG] (2012).Google Scholar
  14. [Eber]
    P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, University of Chicago Press, Chicago, 1996.zbMATHGoogle Scholar
  15. [EH1]
    J.-H. Eschenburg, E. Heintze, Polar representations and symmetric spaces, J. Reine Angew. Math. 507 (1999), 93–106.zbMATHMathSciNetGoogle Scholar
  16. [EH2]
    J.-H. Eschenburg, E. Heintze, On the classification of polar representations, Math. Z. 232 (1999), no. 3, 391–398.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [FGTh]
    F. Fang, K. Grove, G. Thorbergsson, Tits geometry and positive curvature, preprint (2012).Google Scholar
  18. [Freu1]
    H. Freudenthal, Die Topologie der Lieschen Gruppen als algebraisches Phänomen. I, Ann. of Math. (2) 42 (1941), 1051–1074.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [Freu2]
    H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Geom. Dedicata 19 (1985), no. 1, 7–63.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [GKK1]
    T. Grundhöfer, N. Knarr, L. Kramer, Flag-homogeneous compact connected polygons, Geom. Dedicata 55 (1995), no. 1, 95–114.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [GKK2]
    T. Grundhöfer, N. Knarr, L. Kramer, Flag-homogeneous compact connected polygons II, Geom. Dedicata 83 (2000), no. 1–3, 1–29.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [GKVW]
    T. Grundhöfer, L. Kramer, H. Van Maldeghem, R. M. Weiss, Compact totally disconnected Moufang buildings, Tohoku Math. J. (2) 64 (2012), no. 3, 333–360.Google Scholar
  23. [Hel]
    S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, corrected reprint of the 1978 original, Graduate Studies in Mathematics, Vol. 34, Amer. Math. Soc., Providence, RI, 2001.Google Scholar
  24. [HiNe]
    J. Hilgert, K.-H. Neeb, Structure and Geometry of Lie Groups, Springer Monographs in Mathematics, Springer, New York, 2012.CrossRefzbMATHGoogle Scholar
  25. [HoMo]
    K. H. Hofmann, S. A. Morris, The Structure of Compact Groups, de Gruyter Studies in Mathematics, Vol. 25, de Gruyter, Berlin, 1998.Google Scholar
  26. [HsLa]
    W. Hsiang, H. B. Lawson, Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1971), 1–38.zbMATHMathSciNetGoogle Scholar
  27. [Hum]
    J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Vol. 29, Cambridge Univ. Press, Cambridge, 1990.Google Scholar
  28. [Kar]
    H. Karcher, A geometric classification of positively curved symmetric spaces and the isoparametric construction of the Cayley plane, Astérisque 163164 (1988), 6, 111–135, 282 (1989).Google Scholar
  29. [Kn]
    N. Knarr, The nonexistence of certain topological polygons, Forum Math. 2 (1990), no. 6, 603–612.zbMATHMathSciNetGoogle Scholar
  30. [KnKr]
    N. Knarr, L. Kramer, Projective planes and isoparametric hypersurfaces, Geom. Dedicata 58 (1995), no. 2, 193–202.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [Kolm]
    A. Kolmogoroff, Zur Begründung der projektiven Geometrie, Ann. of Math. (2) 33 (1932), no. 1, 175–176.Google Scholar
  32. [Koll]
    A. Kollross, Polar actions on symmetric spaces, J. Differential Geom. 77 (2007), no. 3, 425–482.zbMATHMathSciNetGoogle Scholar
  33. [KoLy]
    A. Kollross, A. Lytchak, Polar actions on symmetric spaces of higher rank, Bull. Lond. Math. Soc. 45 (2013), no. 2, 341–350.CrossRefzbMATHMathSciNetGoogle Scholar
  34. [Kr1]
    L. Kramer, Compact Polygons, Dissertation, Math. Fak. Univ. Tübingen, 1994, arXiv:math/0104064.Google Scholar
  35. [Kr2]
    L. Kramer, Holomorphic polygons, Math. Z. 223 (1996), no. 2, 333–341.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [Kr3]
    L. Kramer, Homogeneous Spaces, Tits Buildings, and Isoparametric Hypersurfaces, Mem. Amer. Math. Soc. 158 (2002), no. 752.Google Scholar
  37. [Kr4]
    L. Kramer, Loop groups and twin buildings, Geom. Dedicata 92 (2002), 145–178.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [Kr5]
    L. Kramer, Two-transitive Lie groups, J. Reine Angew. Math. 563 (2003), 83–113.zbMATHMathSciNetGoogle Scholar
  39. [Kr6]
    L. Kramer, The topology of a semisimple Lie group is essentially unique, Adv. Math. 228 (2011), no. 5, 2623–2633.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [Lyt]
    A. Lytchak, Polar foliations on symmetric spaces, to appear in Geom. Functional Analysis, arXiv:1204.2923v2 [math.DG] (2011).Google Scholar
  41. [Mas]
    W. S. Massey, A Basic Course in Algebraic Topology, Graduate Texts in Mathematics, Vol. 127, Springer, New York, 1991.Google Scholar
  42. [Mil]
    J. W. Milnor, Topology from the Differentiable Viewpoint, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, VA, 1965.Google Scholar
  43. [Mit]
    S. A. Mitchell, Quillen’s theorem on buildings and the loops on a symmetric space, Enseign. Math. (2) 34 (1988), no. 1–2, 123–166.Google Scholar
  44. [Neu]
    A. Neumaier, Some sporadic geometries related to PG(3, 2), Arch. Math. (Basel) 42 (1984), no. 1, 89–96.CrossRefzbMATHMathSciNetGoogle Scholar
  45. [Oni]
    A. L. Onishchik, Topology of Transitive Transformation Groups, Johann Ambrosius Barth, Leipzig, 1994.zbMATHGoogle Scholar
  46. [Pas]
    A. Pasini, Diagram Geometries, Oxford Science Publications, Oxford Univ. Press, New York, 1994.zbMATHGoogle Scholar
  47. [PoTh]
    F. Podestà, G. Thorbergsson, Polar actions on rank-one symmetric spaces, J. Diff. Geom. 53 (1999), no. 1, 131–175.zbMATHGoogle Scholar
  48. [Szm]
    H. Salzmann, Homogene kompakte projektive Ebenen, Pacific J. Math. 60 (1975), no. 2, 217–234.CrossRefzbMATHMathSciNetGoogle Scholar
  49. [CPP]
    H. Salzmann, D. Betten, T. Grundhöfer, H Hähl, R. Löwen, M. Stroppel, Compact Projective Planes, de Gruyter Expositions in Mathematics, Vol. 21, de Gruyter, Berlin, 1995.Google Scholar
  50. [Str]
    E. Straume, Compact connected Lie transformation groups on spheres with low cohomogeneity. I, Mem. Amer. Math. Soc. 119 (1996), no. 569.Google Scholar
  51. [Th]
    G. Thorbergsson, Isoparametric foliations and their buildings, Ann. of Math. (2) 133 (1991), no. 2, 429–446.Google Scholar
  52. [Ti1]
    J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Mathematics, Vol. 386, Springer, Berlin, 1974.Google Scholar
  53. [Ti2]
    J. Tits, A local approach to buildings, in: The Geometric Vein, Springer, New York, 1981, pp. 519–547.Google Scholar
  54. [Ti3]
    J. Tits, Ensembles ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math. Belg. Sér. A 38 (1986), 367–387 (1987).MathSciNetGoogle Scholar
  55. [TW]
    J. Tits, R. M. Weiss, Moufang Polygons, Springer Monographs in Mathematics, Springer, Berlin, 2002.CrossRefzbMATHGoogle Scholar
  56. [War]
    G. Warner, Harmonic Analysis on Semi-simple Lie Groups. I, Springer, New York, 1972.CrossRefzbMATHGoogle Scholar
  57. [We]
    R. M. Weiss, The structure of Spherical Buildings, Princeton Univ. Press, Princeton, NJ, 2003.Google Scholar
  58. [Whi]
    G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics, Vol. 61, Springer, New York, 1978.Google Scholar
  59. [Wilk]
    B. Wilking, A duality theorem for Riemannian foliations in nonnegative sectional curvature, Geom. Funct. Anal. 17 (2007), no. 4, 1297–1320.CrossRefzbMATHMathSciNetGoogle Scholar
  60. [Yos]
    S. Yoshiara, The flag-transitive C 3 -geometries of finite order, J. Algebraic Combin. 5 (1996), no. 3, 251–284.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität MünsterMünsterGermany
  2. 2.Mathematisches InstitutUniversität KölnKölnGermany

Personalised recommendations