Transformation Groups

, Volume 19, Issue 2, pp 313–358 | Cite as




We give a new proof of Braden’s theorem ([Br]) about hyperbolic restrictions of constructible sheaves/D-modules. The main geometric ingredient in the proof is a 1-parameter family that degenerates a given scheme Z equipped with a \( {\mathbb G} \) m -action to the product of the attractor and repeller loci.


Algebraic Group Natural Transformation Full Subcategory Canonical Isomorphism Homotopy Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ach]
    P. N. Achar, Green functions via hyperbolic localization, Doc. Math. 16 (2011), 869–884.zbMATHMathSciNetGoogle Scholar
  2. [AC]
    P. N. Achar, C. L. R. Cunningham, Toward a Mackey formula for compact restriction of character sheaves, arXiv:1011.1846.Google Scholar
  3. [AM]
    P. N. Achar, C. Mautner, Sheaves on nilpotent cones, Fourier transform, and a geometric Ringel duality, arXiv:1207.7044.Google Scholar
  4. [Bi-Br]
    S. C. Billey, T. Braden, Lower bounds for Kazhdan–Lusztig polynomials from patterns, Transform. Groups 8 (2003), no. 4, 321-332.Google Scholar
  5. [Bia]
    A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [Br]
    T. Braden, Hyperbolic localization of Intersection Cohomology, Transform. Groups 8 (2003), no. 3, 209–216.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [Dr]
    V. Drinfeld, On algebraic spaces with an action of \( {\mathbb G} \) m, arXiv:math/1308.2604.Google Scholar
  8. [DrGa1]
    V. Drinfeld, D. Gaitsgory, On some finiteness questions for algebraic stacks, Geom. Funct. Analysis 23 (2013), 149–294.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [DrGa2]
    V. Drinfeld, D. Gaitsgory, Compact generation of the category of D-modules on the stack of G-bundles on a curve, arXiv:math/1112.2402.Google Scholar
  10. [DrGa3]
    V. Drinfeld, D. Gaitsgory, Geometric constant term functor(s), arXiv:1311. 2071.Google Scholar
  11. [GM]
    M. Goresky, R. MacPherson, Local contribution to the Lefschetz fixed point formula, Invent. Math. 111 (1993), 1–33.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [GH]
    I. Grojnowski, M. Haiman, Affine Hecke algebras and positivity of LLT and Macdonald polynomials, available at
  13. [Ju1]
    J. Jurkiewicz, An example of algebraic torus action which determines the non-filtrable decomposition, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 11, 1089–1092.MathSciNetGoogle Scholar
  14. [Ju2]
    J. Jurkiewicz, Torus Embeddings, Polyhedra, k *-Actions and Homology, Dissertationes Math. (Rozprawy Mat.) 236 (1985), 64 pp.Google Scholar
  15. [KKMS]
    G. Kempf, F. F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings, I Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin, 1973.Google Scholar
  16. [KKLV]
    F. Knop, H. Kraft, D. Luna, T. Vust, Local properties of algebraic group actions, in: Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar, Bd. 13, Birkhäuser, Basel, 1989, pp. 63–75.Google Scholar
  17. [Kn]
    D. Knutson, Algebraic Spaces, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin, 1971.Google Scholar
  18. [Kon]
    J. Konarski, A pathological example of an action of k *, in: Group Actions and Vector Fields (Vancouver, B.C., 1981), Lecture Notes in Mathematics, Vol. 956, Springer, Berlin, 1982, pp. 72–78.Google Scholar
  19. [LM]
    G. Laumon, L. Moret-Bailly, Champs Algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete (3 Folge), Bd. 39, Springer-Verlag, Berlin, 2000.Google Scholar
  20. [Lur]
    J. Lurie, Higher Topos Theory, Annals of Mathematics Studies, Vol. 170, Princeton University Press, Princeton, NJ, 2009.Google Scholar
  21. [Ly1]
    S. Lysenko, Moduli of metaplectic bundles on curves and theta-sheaves, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 3, 415–466.Google Scholar
  22. [Ly2]
    S. Lysenko, Geometric theta-lifting for the dual pair (SO(2m), Sp(2n)), Ann. Sci. École Norm. Sup. (4) 44 (2011), no. 3, 427–493.Google Scholar
  23. [MV]
    I. Mirković, K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143.Google Scholar
  24. [Nak]
    H. Nakajima, Quiver varieties and tensor products, II, arXiv:1207.0529.Google Scholar
  25. [Som]
    A. J. Sommese, Some examples of* actions, in: Group Actions and Vector Fields (Vancouver, B.C., 1981), Lecture Notes in Mathematics, Vol. 956, Springer, Berlin, 1982, pp. 118–124.Google Scholar
  26. [Sum]
    H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations