Spin(9) geometry of the octonionic Hopf fibration
Article
First Online:
- 188 Downloads
- 5 Citations
Abstract
We deal with Riemannian properties of the octonionic Hopf fibration S 15 → S 8, in terms of the structure given by its symmetry group Spin(9). In particular, we show that any vertical vector field has at least one zero, thus reproving the non-existence of S 1 subfibrations. We then discuss Spin(9)-structures from a conformal viewpoint and determine the structure of compact locally conformally parallel Spin(9)-manifolds. Eventually, we give a list of examples of locally conformally parallel Spin(9)-manifolds.
Keywords
Conformal Class Vectorial Type Vertical Vector Parallel Spin Vector Bundle Versus
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [AF06]I. Agricola, T. Friedrich, Geometric structures of vectorial type, J. Geom. Phys. 56 (2006), no. 12, 2403–2414.MathSciNetzbMATHCrossRefGoogle Scholar
- [Ale68]Д. В. Алексеевский, Римановы пространства с необычными группами голономии, Функц. анализ и его прил. 2 (1968), вып. 2, 1–10. Engl. transl.: D. V. Alekseevskii, Riemannian spaces with exceptional holonomy groups, Func. Anal. Appl. 2 (1968), no. 2, 97–105.CrossRefGoogle Scholar
- [Bae02]J. C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205.MathSciNetzbMATHCrossRefGoogle Scholar
- [Ber72]M. Berger, Du côté de chez Pu, Ann. Sci. École Norm. Sup. (4) 5 (1972), 1–44.zbMATHGoogle Scholar
- [BrGr72]R. B. Brown, A. Gray, Riemannian manifolds with holonomy group Spin(9), in: Differential Geometry, in Honor of K. Yano, Kinokuniya, Tokyo, 1972, pp. 41–59.Google Scholar
- [BG99]C. Boyer, K. Galicki, 3-Sasakian manifolds, in: Surveys in Differential Geometry: Essays on Einstein Manifolds, Int. Press, Boston, MA, 1999, pp. 123–184.Google Scholar
- [BGMR98]C. P. Boyer, K. Galicki, B. M. Mann, E. G. Rees, Compact 3-Sasakian 7-manifolds with arbitrary second Betti number, Invent. Math. 131 (1998), no. 2, 321–344.MathSciNetzbMATHCrossRefGoogle Scholar
- [Bru92]M. Bruni, Sulla parallelizzazione esplicita dei prodotti di sfere, Rend. di Mat., serie VII 12 (1992), 405–423.MathSciNetzbMATHGoogle Scholar
- [Cor92]K. Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. Math. (2) 135 (1992), no. 1, 165–182.MathSciNetzbMATHCrossRefGoogle Scholar
- [Cox91].H. S. M. Coxeter, Regular Complex Polytopes, 2nd ed., Cambridge University Press, Cambridge, 1991.zbMATHGoogle Scholar
- [CP99].D. M. J. Calderbank, H. Pedersen, Einstein−Weyl geometry, in: Surveys in Differential Geometry: Essays on Einstein Manifolds, Int. Press, Boston, MA, 1999, pp. 387–423.Google Scholar
- [Dea08]O. Dearricott, n-Sasakian manifolds, Tohoku Math. J. (2) 60 (2008), no. 3, 329–347.MathSciNetzbMATHCrossRefGoogle Scholar
- [DO98]S. Dragomir, L. Ornea, Locally Conformal Kähler Geometry, Progress in Math., Vol. 155, Birkhäuser, Boston, MA, 1998.zbMATHCrossRefGoogle Scholar
- [DS01]R. De Sapio, On Spin(8) and triality: A topological approach, Expo. Math. 19 (2001), no. 2, 143–161.MathSciNetzbMATHCrossRefGoogle Scholar
- [FO08]J. Figueroa-O’Farrill, A geometric construction of the exceptional Lie algebras F 4 and E 8, Comm. Math. Phys. 283 (2008), no. 3, 663–674.MathSciNetzbMATHCrossRefGoogle Scholar
- [Fri01]T. Friedrich, Weak Spin(9)-structures on 16-dimensional Riemannian manifolds, Asian J. Math. 5 (2001), no. 1, 129–160.MathSciNetzbMATHGoogle Scholar
- [Gau95]P. Gauduchon, Structures de Weyl−Einstein, espaces de twisteurs et variétés de type S 1 × S 3, J. Reine Angew. Math. 469 (1995), 1–50.MathSciNetzbMATHGoogle Scholar
- [GOPP06]R. Gini, L. Ornea, M. Parton, P. Piccinni, Reduction of Vaisman structures in complex and quaternionic geometry, J. Geom. Phys. 56 (2006), no. 12, 2501–2522.MathSciNetzbMATHCrossRefGoogle Scholar
- [GWZ86]H. Gluck, F. Warner, W. Ziller, The geometry of the Hopf fibrations, Enseign. Math. (2) 32 (1986), no. 3–4, 173–198.MathSciNetzbMATHGoogle Scholar
- [Har90]F. R. Harvey, Spinors and Calibrations, Perspectives in Mathematics, Vol. 9, Academic Press, Boston, MA, 1990.zbMATHGoogle Scholar
- [Hus94]D. Husemoller, Fibre Bundles, 3rd ed., Graduate Texts in Mathematics, Vol. 20, Springer-Verlag, New York, 1994.CrossRefGoogle Scholar
- [IPP06]S. Ivanov, M. Parton, P. Piccinni, Locally conformal parallel G 2 and Spin(7) manifolds, Math. Res. Lett. 13 (2006), no. 2–3, 167–177.MathSciNetzbMATHGoogle Scholar
- [Kol02]A. Kollross, A classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc. 354 (2002), no. 2, 571–612.MathSciNetzbMATHCrossRefGoogle Scholar
- [LV92]B. Loo, A. Verjovsky, The Hopf fibration over S 8 admits no S 1-subfibration, Topology 31 (1992), no. 2, 239–254.MathSciNetzbMATHCrossRefGoogle Scholar
- [Mur89]S. Murakami, Exceptional simple Lie groups and related topics in recent differential geometry, in: Differential Geometry and Topology (Tianjin 1986–87), Lecture Notes in Mathematics, Vol. 1369, Springer, Berlin, 1989, pp. 183–221.CrossRefGoogle Scholar
- [O’N83]B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Pure and Applied Mathematics, Vol. 103, Academic Press, New York, 1983.zbMATHGoogle Scholar
- [OP97]L. Ornea, P. Piccinni, Locally conformal Kähler structures in quaternionic geometry, Trans. Am. Math. Soc. 349 (1997), no. 2, 641–655.MathSciNetzbMATHCrossRefGoogle Scholar
- [OV03]L. Ornea, M. Verbitsky, Structure theorem for compact Vaisman manifolds, Math. Res. Lett. 10 (2003), no. 5–6, 799–805.MathSciNetzbMATHGoogle Scholar
- [Par01a]M. Parton, Hermitian and special structures on products of spheres, PhD thesis, Dipartimento di Matematica, Università di Pisa, 2001, www.sci.unich.it/~parton/rice/main.pdf.
- [Par01b]M. Parton, Old and new structures on products of spheres, in: Global Differential Geometry: the Mathematical Legacy of Alfred Gray, Bilbao, 2000, American Math. Soc., Providence, RI, 2001, pp. 406–410.CrossRefGoogle Scholar
- [Par03]M. Parton, Explicit parallelizations on products of spheres and Calabi−Eckmann structures, Rend. Ist. Mat. Univ. Trieste 35 (2003), no. 1–2, 61–67.MathSciNetzbMATHGoogle Scholar
- [PP12]M. Parton, P. Piccinni, Spin(9) and almost complex structures on 16-dimensional manifolds, Ann. Global Anal. Geom. 41 (2012), no. 3, 321–345.MathSciNetzbMATHCrossRefGoogle Scholar
- [PP13]M. Parton, P. Piccinni, Spheres with more than 7 vector fields: All the fault of Spin (9), Linear Algebra Appl. 438 (2013), no. 3, 1113–1131.MathSciNetzbMATHCrossRefGoogle Scholar
- [Ste99]N. Steenrod, The Topology of Fibre Bundles, 1st paperback ed., Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999.zbMATHGoogle Scholar
- [Var01]V. S. Varadarajan, Spin(7)-subgroups of SO(8) and Spin(8), Expo. Math. 19 (2001), no. 2, 163–177.MathSciNetzbMATHCrossRefGoogle Scholar
- [Zil82]W. Ziller, Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann. 259 (1982), no. 3, 351–358.MathSciNetzbMATHCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2013