Transformation Groups

, 16:1027 | Cite as

Irregular locus of the commuting variety of reductive symmetric lie algebras and rigid pairs

  • M. Bulois


The aim of this paper is to describe the irregular locus of the commuting variety of a reductive symmetric Lie algebra. More precisely, we want to enlighten a remark of V. L. Popov. In one of his papers, the irregular locus of the commuting variety of any reductive Lie algebra is described and its codimension is computed. This provides a bound for the codimension of the singular locus of this commuting variety. V. L. Popov also suggests that his arguments and methods are suitable for obtaining analogous results in the symmetric setting. We show that some difficulties arise in this case and we obtain some results on the irregular locus of the component of maximal dimension of the “symmetric commuting variety”. As a by-product, we study some pairs of commuting elements specific to the symmetric case, that we call rigid pairs. These pairs allow us to find all symmetric Lie algebras whose commuting variety is reducible.


Irreducible Component Nilpotent Element Nilpotent Orbit Symmetric Pair Semisimple Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [An]
    Л. B. Aнтонян, О клaссuфuкацuu оƌнороƌных элеменmов Z 2-ƨраƌyuрованных nолуросmых алƨебр Лu, Becтн. Mоск. унив., cep. I, мaт., мeх. 37 (1982), 29–34. Engl. transl.: L. V. Antonyan, On the classification of homogeneous elements of \( {{\mathbb {Z}}_2} \) -graded semisimple Lie algebras, Mosc. Univ. Math. Bull. 37 (1982), no. 2, 36–43.Google Scholar
  2. [Ar]
    S. Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1–34.MathSciNetGoogle Scholar
  3. [BC]
    P. Bala, R. W. Carter, Classes of unipotent elements in simple algebraic groups II, Math. Proc. Cambridge Philos. Soc. 80 (1976), 1–18.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [Bo]
    W. Borho, Über Schichten halbeinfacher Lie-Algebren, Invent. Math. 65 (1981), 283–317.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [Bu1]
    M. Bulois, Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple, Ann. Inst. Fourier 59 (2009), 37–80.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [Bu2]
    M. Bulois, Sheets of symmetric Lie algebras and Slodowy slices, J. Lie Theory 21 (2011), 1–54.MathSciNetzbMATHGoogle Scholar
  7. [CM]
    D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold, New York, 1993.zbMATHGoogle Scholar
  8. [Dj1]
    D. Z. Djokovic, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebra 112 (1988), 503–524.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [Dj2]
    D. Z. Djokovic, Classification of nilpotent elements in simple real Lie algebras E6(6) and E6(26) and description of their centralizers, J. Algebra 116 (1988), 196–207.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [EP1]
    A. G. Elashvili, D. Panyushev, Towards a classification of principal nilpotent pairs, [Gi, Appendix].Google Scholar
  11. [EP2]
    A. G. Elashvili, D. Panyushev, A classification of the principal nilpotent pairs in simple Lie algebras and related problems, J. London Math. Soc. (2) 63 (2001), 299–318.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [GAP]
    The GAP Group, GAP—Groups, Algorithms, and Programming, version 4:4:12, 2008,
  13. [Gi]
    V. Ginzburg, Principal nilpotent pairs in a semisimple Lie algebra I, Invent. Math. 140 (2000), 511–561.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [GW]
    R. Goodman, N. R. Wallach, An algebraic group approach to compact symmetric spaces,
  15. [Ha]
    R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York, 1977. Russia transl.: P. Xapтсхоpнб, Aлƨебраuческая ƨeoмеmрuя, Mиp, M., 1981.Google Scholar
  16. [He]
    S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, Vol. 80, Academic Press, New York, 1978.Google Scholar
  17. [JN]
    S. G. Jackson, A. G. Noel, Prehomogeneous spaces associated with nilpotent orbits,
  18. [KR]
    B. Kostant, S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [LS]
    G. Lusztig, N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), 41–52.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [Oh1]
    T. Ohta, The singularities of the closure of nilpotent orbits in certain symmetric pairs, Tohoku Math. J. 38 (1986), 441–468.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [Oh2]
    T. Ohta, The closure of nilpotent orbits in the classical symmetric pairs and their singularities, Tohoku Math. J. 43 (1991), 161–211.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [Pa1]
    D. I. Panyushev, The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compositio Math. 94 (1994), 181–199.MathSciNetzbMATHGoogle Scholar
  23. [Pa2]
    D. I. Panyushev, Nilpotent pairs in semisimple Lie algebras and their characteristics, Internat. Math. Res. Notices 2000 , 1–21.Google Scholar
  24. [Pa3]
    D. I. Panyushev, Nilpotent pairs, dual pairs and sheets, J. Algebra 240 (2001), 635–664.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [Pa4]
    Д. И. Панюшев, О неnpuвоƋuмocmu коммymamopных мноƨообpa3uŭ, свя3анных с uнвопюцuямu npocmых апƨебp Лu, Φункц. aнaлиз и его пpилож. 38 (2004), no. 1, 47‐55, 95. Engl. transl.: D. I. Panyushev, On the irreducibility of commuting varieties associated with involutions of simple Lie algebras, Func. Anal. Appl. 38 (2004), 38–44.Google Scholar
  26. [PY]
    D. I. Panyushev, O. Yakimova, Symmetric pairs and associated commuting varieties, Math. Proc. Cambridge Philos. Soc. 143 (2007), 307–321.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [Po]
    V. L. Popov, Irregular and singular loci of commuting varieties, Transform. Groups 13 (2008), 819–837.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [PT]
    V. L. Popov, E. A. Tevelev, Self-dual projective algebraic varieties associated with symmetric spaces, in: V. Popov, ed., Algebraic Transformation Groups and Algebraic Varieties, Encyclopedia of Mathematical Sciences, Vol. 132, Series Invariant Theory and Transformation Groups, Vol. III, Springer, Berlin, 2004, pp. 131–167.Google Scholar
  29. [Pr]
    A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003), 653–683.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [Ri]
    R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979), 311–327.MathSciNetzbMATHGoogle Scholar
  31. [SY]
    H. Sabourin, R. W. T. Yu, On the irreducibility of the commuting variety of the symmetric pair \( \left( {{\mathfrak{s}}{{\mathfrak{o}}_{p + 2}},{\mathfrak{s}}{{\mathfrak{o}}_p} \times {\mathfrak{s}}{{\mathfrak{o}}_2}} \right) \), J. Lie Theory 16 (2006), 57–65.MathSciNetzbMATHGoogle Scholar
  32. [St]
    R. Steinberg, Torsion in reductive groups, Adv. Math. 15 (1995), 63–92.MathSciNetCrossRefGoogle Scholar
  33. [TY]
    P. Tauvel, R. W. T. Yu, Lie Algebras and Algebraic Groups, Springer Monographs in Mathematics, Springer, Berlin, 2005.zbMATHGoogle Scholar
  34. [Yu]
    R. W. T. Yu, Centralizers of distinguished nilpotent pairs and related problems, J. Algebra 252 (2002), 167–194.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.LAREMAAngers Cedex 1France

Personalised recommendations