Transformation Groups

, Volume 17, Issue 1, pp 195–207 | Cite as

Tensor products and Minkowski sums of Mirković–Vilonen polytopes



The purpose of this paper is to prove that the Mirković–Vilonen (MV) polytope corresponding to the tensor product of two arbitrary MV polytopes is contained, as a set, in the Minkowski sum of these two MV polytopes. This result generalizes the one in our previous paper, which was obtained under the assumption that the first tensor factor is an extremal MV polytope.

AMS classification

Primary, 17B37, 20G05 Secondary, 17B10, 14M15, 05E15 

Key words and phrases

Crystal basis tensor product Mirković–Vilonen cycle Mirković–Vilonen polytope Minkowski sum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    J. E. Anderson, A polytope calculus for semisimple groups, Duke Math. J. 116 (2003), 567–588.MathSciNetMATHCrossRefGoogle Scholar
  2. [BaG]
    P. Baumann, S. Gaussent, On Mirković–Vilonen cycles and crystal combinatorics, Represent. Theory 12 (2008), 83–130.MathSciNetMATHCrossRefGoogle Scholar
  3. [BeZ]
    A. Berenstein, A. Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), 128–166.MathSciNetMATHCrossRefGoogle Scholar
  4. [BjB]
    A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Vol. 231, Springer, New York, 2005.MATHGoogle Scholar
  5. [BrFG]
    A. Braverman, M. Finkelberg, D. Gaitsgory, Uhlenbeck spaces via affine Lie algebras, in: The Unity of Mathematics (P. Etingof et al., Eds.), Progress in Mathematics, Vol. 244, Birkhäuser, Boston, 2006, pp. 17–135.CrossRefGoogle Scholar
  6. [BrG]
    A. Braverman, D. Gaitsgory, Crystals via the affine Grassmannian, Duke Math. J. 107 (2001), 561–575.MathSciNetMATHCrossRefGoogle Scholar
  7. [E1]
    M. Ehrig, MV-polytopes via affine buildings, Duke Math. J. 155 (2010), 433–482.MathSciNetMATHCrossRefGoogle Scholar
  8. [E2]
    M. Ehrig, Construction of MV-polytopes via LS-galleries, Dissertation, University of Cologne, 2008.Google Scholar
  9. [FZ]
    S. Fomin, A. Zelevinsky, Recognizing Schubert cells, J. Algebraic Combin. 12 (2000), 37–57.MathSciNetMATHCrossRefGoogle Scholar
  10. [Kam1]
    J. Kamnitzer, The crystal structure on the set of Mirković–Vilonen polytopes, Adv. Math. 215 (2007), 66–93.MathSciNetMATHCrossRefGoogle Scholar
  11. [Kam2]
    J. Kamnitzer, Hives and the fibres of the convolution morphism, Selecta Math. (N.S.) 13 (2007), 483–496.MathSciNetMATHGoogle Scholar
  12. [Kam3]
    J. Kamnitzer, Mirković–Vilonen cycles and polytopes, Ann. of Math. (2) 171 (2010), 731–777.MathSciNetMATHCrossRefGoogle Scholar
  13. [Kas]
    M. Kashiwara, Bases Cristallines des Groupes Quantiques, Cours Spécialisés, Vol. 9, Société Mathématique de France, Paris, 2002.MATHGoogle Scholar
  14. [KNS]
    S. Kato, S. Naito, D. Sagaki, Polytopal estimate of Mirković–Vilonen polytopes lying in a Demazure crystal, Adv. Math. 226 (2011), 2587–2617.MathSciNetMATHCrossRefGoogle Scholar
  15. [MV1]
    I. Mirković, K. Vilonen, Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000), 13–24.MathSciNetMATHGoogle Scholar
  16. [MV2]
    I. Mirković, K. Vilonen, Geometric Langlands duality and representations ofalgebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95–143.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsKyoto UniversityKyotoJapan
  2. 2.Institute of MathematicsUniversity of TsukubaTsukuba, IbarakiJapan

Personalised recommendations