Advertisement

Transformation Groups

, Volume 16, Issue 4, pp 1009–1025 | Cite as

Expected degree of weights in Demazure modules of \( {\hat{\mathfrak{sl}}_2} \)

  • T. Bliem
  • S. Kousidis
Article

Abstract

We compute the expected degree of a randomly chosen element in a basis of weight vectors in the Demazure module V w (Λ) of \( {\hat{\mathfrak{sl}}_2} \). We obtain en passant a new proof of Sanderson's dimension formula for these Demazure modules.

Keywords

Degree Distribution Dynkin Diagram Character Formula Real Character Limit Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DH82]
    J. J. Duistermaat, G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), no. 2, 259–268.MathSciNetMATHCrossRefGoogle Scholar
  2. [FL06]
    G. Fourier, P. Littelmann, Tensor product structure of affine Demazure modules and limit constructions, Nagoya Math. J. 182 (2006), 171–198.MathSciNetMATHGoogle Scholar
  3. [FMO98]
    O. Foda, K. C. Misra, M. Okado, Demazure modules and vertex models: the \( {{\rm{\hat{sl}}}_2} \) case, J. Math. Phys. 39 (1998), no. 3, 1601–1622.MathSciNetMATHCrossRefGoogle Scholar
  4. [Kac90]
    V. G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. Russian transl.: В. Кац, Бесконечномерные агебры Лu, Мир, М., 1993Google Scholar
  5. [Kas93]
    M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858.MathSciNetMATHCrossRefGoogle Scholar
  6. [KMOU98]
    A. Kuniba, K. C. Misra, M. Okado, J. Uchiyama, Demazure modules and perfect crystals, Comm. Math. Phys. 192 (1998), no. 3, 555–567.MathSciNetMATHCrossRefGoogle Scholar
  7. [Kum87]
    S. Kumar, Demazure character formula in arbitrary Kac-Moody setting, Invent. Math. 89 (1987), no. 2, 395–423.MathSciNetMATHCrossRefGoogle Scholar
  8. [Mat86]
    O. Mathieu, Formules de Demazure-Weyl, et généralisation du théorème de Borel-Weil-Bott, C. R. Acad. Sci., Paris, Sér. I 303 (1986), 391–394.MathSciNetMATHGoogle Scholar
  9. [Mat88]
    O. Mathieu, Formules de Caractères pour les Algèbres de Kac-Moody Générales, Astérisque, Vol. 159–160, Société Mathématique de France, 1988.Google Scholar
  10. [San96a]
    Y. B. Sanderson, Dimensions of Demazure modules for rank two affine Lie algebras, Compositio Math. 101 (1996), no. 2, 115–131.MathSciNetMATHGoogle Scholar
  11. [San96b]
    Y. B. Sanderson, Real characters for Demazure modules of rank two affine Lie algebras, J. Algebra 184 (1996), no. 3, 985–1000.MathSciNetMATHCrossRefGoogle Scholar
  12. [TZ04]
    T. Tate, S. Zelditch, Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers, J. Funct. Anal. 217 (2004), no. 2, 402–447.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsSan Francisco State UniversitySan FranciscoUSA
  2. 2.Mathematisches InstitutUniversität zu KölnKöolnGermany

Personalised recommendations