Transformation Groups

, Volume 16, Issue 4, pp 1009–1025 | Cite as

Expected degree of weights in Demazure modules of \( {\hat{\mathfrak{sl}}_2} \)

Article

Abstract

We compute the expected degree of a randomly chosen element in a basis of weight vectors in the Demazure module V w (Λ) of \( {\hat{\mathfrak{sl}}_2} \). We obtain en passant a new proof of Sanderson's dimension formula for these Demazure modules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DH82]
    J. J. Duistermaat, G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), no. 2, 259–268.MathSciNetMATHCrossRefGoogle Scholar
  2. [FL06]
    G. Fourier, P. Littelmann, Tensor product structure of affine Demazure modules and limit constructions, Nagoya Math. J. 182 (2006), 171–198.MathSciNetMATHGoogle Scholar
  3. [FMO98]
    O. Foda, K. C. Misra, M. Okado, Demazure modules and vertex models: the \( {{\rm{\hat{sl}}}_2} \) case, J. Math. Phys. 39 (1998), no. 3, 1601–1622.MathSciNetMATHCrossRefGoogle Scholar
  4. [Kac90]
    V. G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. Russian transl.: В. Кац, Бесконечномерные агебры Лu, Мир, М., 1993Google Scholar
  5. [Kas93]
    M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858.MathSciNetMATHCrossRefGoogle Scholar
  6. [KMOU98]
    A. Kuniba, K. C. Misra, M. Okado, J. Uchiyama, Demazure modules and perfect crystals, Comm. Math. Phys. 192 (1998), no. 3, 555–567.MathSciNetMATHCrossRefGoogle Scholar
  7. [Kum87]
    S. Kumar, Demazure character formula in arbitrary Kac-Moody setting, Invent. Math. 89 (1987), no. 2, 395–423.MathSciNetMATHCrossRefGoogle Scholar
  8. [Mat86]
    O. Mathieu, Formules de Demazure-Weyl, et généralisation du théorème de Borel-Weil-Bott, C. R. Acad. Sci., Paris, Sér. I 303 (1986), 391–394.MathSciNetMATHGoogle Scholar
  9. [Mat88]
    O. Mathieu, Formules de Caractères pour les Algèbres de Kac-Moody Générales, Astérisque, Vol. 159–160, Société Mathématique de France, 1988.Google Scholar
  10. [San96a]
    Y. B. Sanderson, Dimensions of Demazure modules for rank two affine Lie algebras, Compositio Math. 101 (1996), no. 2, 115–131.MathSciNetMATHGoogle Scholar
  11. [San96b]
    Y. B. Sanderson, Real characters for Demazure modules of rank two affine Lie algebras, J. Algebra 184 (1996), no. 3, 985–1000.MathSciNetMATHCrossRefGoogle Scholar
  12. [TZ04]
    T. Tate, S. Zelditch, Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers, J. Funct. Anal. 217 (2004), no. 2, 402–447.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MathematicsSan Francisco State UniversitySan FranciscoUSA
  2. 2.Mathematisches InstitutUniversität zu KölnKöolnGermany

Personalised recommendations