Transformation Groups

, Volume 16, Issue 1, pp 137–160 | Cite as

Geometric structures encoded in the lie structure of an Atiyah algebroid

Article

Abstract

We investigate Atiyah algebroids, i.e. the infinitesimal objects of principal bundles, from the viewpoint of the Lie algebraic approach to space. First we show that if the Lie algebras of smooth sections of two Atiyah algebroids are isomorphic, then the corresponding base manifolds are necessarily diffeomorphic. Further, we give two characterizations of the isomorphisms of the Lie algebras of sections for Atiyah algebroids associated to principal bundles with semisimple structure groups. For instance we prove that in the semisimple case the Lie algebras of sections are isomorphic if and only if the corresponding Lie algebroids are, or, as well, if and only if the integrating principal bundles are locally isomorphic. Finally, we apply these results to describe the isomorphisms of sections in the case of reductive structure groups—surprisingly enough they are no longer determined by vector bundle isomorphisms and involve dive rgences on the base manifolds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AM85]
    R. Almeida, P. Molino, Suites d'Atiyah et feuilletages transversalement complets, C. R. Acad. Sci. Paris Ser. I, Math. 300 (1985), 13–15.MATHMathSciNetGoogle Scholar
  2. [AMS75]
    I. Amemiya, K. Masuda, K. Shiga, Lie algebras of differential operators, Osaka J. Math. 12 (1975), 139–172.MATHMathSciNetGoogle Scholar
  3. [Ati57]
    M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207.CrossRefMATHMathSciNetGoogle Scholar
  4. [DS76]
    J. J. Duistermaat, I. M. Singer, Order-preserving isomorphisms between algebras of pseudo-differential operators, Comm. Pure Appl. Math. 29 (1976), no. 1, 39–47.CrossRefMATHMathSciNetGoogle Scholar
  5. [Ehr59]
    C. Ehresmann, Catégories topologiques et catégories différentiables, Colloq. Géom. Diff. Globale, Bruxelles, 1959, pp. 137–150.Google Scholar
  6. [Gra78]
    J. Grabowski, Isomorphisms and ideals of the Lie algebras of vector fields, Invent. math. 50 (1978), 13–33.CrossRefMATHMathSciNetGoogle Scholar
  7. [Gra93]
    J. Grabowski, Lie algebras of vector fields and generalized foliations, Publ. Math. 37 (1993), 359–367.MATHMathSciNetGoogle Scholar
  8. [Gra05]
    J. Grabowski, Isomorphisms of algebras of smooth functions revisited, Arch. Math. (Basel) 85 (2005), 190–196.MATHMathSciNetGoogle Scholar
  9. [GG01]
    K. Grabowska, J. Grabowski, Lie algebras of Lie algebroids, in: Lie Algebroids and Related Topics in Differential Geometry, J. Kubarski et al. (eds.), Banach Center Publ., Warsaw, Vol. 54, 2001, pp. 43–50.Google Scholar
  10. [GG08]
    K. Grabowska, J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A: Math. Theor. 41 (2008), 175204, 25 pp.Google Scholar
  11. [GGU06]
    K. Grabowska, J. Grabowski, P. Urbański, Geometrical mechanics on algebroids, Int. J. Geom. Methods Mod. Phys. 3 (2006), 559–575.CrossRefMathSciNetGoogle Scholar
  12. [GP04]
    J. Grabowski, N. Poncin, Automorphisms of quantum and classical Poisson algebras, Compos. Math. 140 (2004), 511–527.CrossRefMATHMathSciNetGoogle Scholar
  13. [GP05]
    J. Grabowski, N. Poncin, Derivations of the Lie algebras of differential operators, Indag. Math. 16 (2005), no. 2, 181–200.CrossRefMATHMathSciNetGoogle Scholar
  14. [GP07]
    J. Grabowski, N. Poncin, On quantum and classical Poisson algebras, Banach Center Publ., Warsaw, Vol. 76, 2007, pp. 313–324.CrossRefMathSciNetGoogle Scholar
  15. [Kub89]
    J. Kubarski, Lie algebroid of a principal bundle, Publ. Dép. Math. Univ. C. Bernard, Nouvelle Ser. A 89-1 (1989), 1–66.MathSciNetGoogle Scholar
  16. [LMM05]
    M. de Léon, J. C. Marrero, E. Martinez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math Gen. 38 (2005), no. 24, 241–308.CrossRefGoogle Scholar
  17. [Lib69]
    P. Libermann, Sur les prolongements des fibrés principaux et groupoïdes différentiables, Analyse Globale (Sem. Math. Superieures, No. 42, Univ. Montreal, Montreal, Que., 1969), Presses Univ. Montreal, Montreal, Que., 1971, pp. 7–108.Google Scholar
  18. [Mac05]
    K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Math. Soc. Lecture Note Series, Vol. 213, Cambridge University Press, Cambridge, 2005.Google Scholar
  19. [Mar08]
    C.-M. Marle, Calculus on Lie algebroids, Lie groupoids and Poisson manifolds, Dissertationes Math. 457 (2008), 57 pp.CrossRefMathSciNetGoogle Scholar
  20. [Mar01]
    E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math. 67 (2001), 295–320.CrossRefMATHMathSciNetGoogle Scholar
  21. [Mes05]
    T. Mestdag, A Lie algebroid approach to Lagrangian systems with symmetry, in: Differential Geometry and its Applications, Matfyzpress, Prague, 2005, pp. 523–535.Google Scholar
  22. [Mrc05]
    J. Mrcun, On isomorphisms of algebras of smooth functions, Proc. Amer. Math. Soc. 133 (2005), 3109–3113 (electronic).CrossRefMATHMathSciNetGoogle Scholar
  23. [Omo76]
    H. Omori, Infinite-Dimensional Lie Transformation Groups, Lecture Notes in Mathematics, Vol. 427, Springer-Verlag, New York, 1976.Google Scholar
  24. [Pon98]
    N. Poncin, Premier et deuxième espaces de cohomologie de l'algèbre de Lie des opérateurs différentiels sur une variété, à coefficients dans les fonctions, Bull. Soc. Roy. Sci. Liège 67 (1998), no. 6, 291–337.MATHMathSciNetGoogle Scholar
  25. [Pra67]
    J. Pradines, Théorie de Lie pour les groupoïdes différentiables, Calcul différentiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris Sér. A 264 (1967), 246–248.MathSciNetGoogle Scholar
  26. [PS54]
    L. E. Pursell, M. E. Shanks, The Lie algebra of a smooth manifold, Proc. Amer. Math. Soc. 5 (1954), 468–472.CrossRefMATHMathSciNetGoogle Scholar
  27. [Skr87]
    С. М. Скрябин, Регулярные алгебры Лu дuфференцuрованuй коммуmаmuвных колец, препринт ВИНИТИ 4403–W87, 1987. [S. M. Skryabin, The regular Lie rings of derivations of commutative rings, preprint VINITI 4403-W87, 1987 (Russian)].Google Scholar
  28. [Wei96a]
    A. Weinstein, Groupoids: unifying internal and external symmetry, Amer. Math. Soc. Not. 43 (1996), 744–752.MATHGoogle Scholar
  29. [Wei96b]
    A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Commun. 7 (1996), 207–231.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Janusz Grabowski
    • 1
  • Alexei Kotov
    • 2
  • Norbert Poncin
    • 2
  1. 1.Polish Academy of SciencesInstitute of MathematicsWarsawPoland
  2. 2.University of LuxembourgLuxembourg CityGrand-Duchy of Luxembourg

Personalised recommendations