Advertisement

Transformation Groups

, Volume 16, Issue 1, pp 219–264 | Cite as

Open problems on central simple algebras

  • Asher Auel
  • Eric Brussel
  • Skip Garibaldi
  • Uzi Vishne
Article

Abstract

We provide a survey of past research and a list of open problems regarding central simple algebras and the Brauer group over a field, intended both for experts and for beginners.

Keywords

Division Algebra Central Simple Algebra Transcendence Degree Galois Closure Cyclic Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Al32]
    A. A. Albert, Normal division algebras of degree four over an algebraic field, Trans. Amer. Math. Soc. 34 (1932), no. 2, 363–372.MathSciNetGoogle Scholar
  2. [Al33]
    A. A. Albert, Non-cyclic division algebras of degree and exponent four, Trans. Amer. Math. Soc. 35 (1933), 112–121.MathSciNetGoogle Scholar
  3. [Al34]
    A. A. Albert, Normal division algebras of degree 4 over F of characteristic 2, Amer. J. Math. 56 (1934), nos. 1–4, 75–86.MathSciNetGoogle Scholar
  4. [Al36]z
    A. A. Albert, Simple algebras of degree p e over a centrum of characteristic p, Trans. Amer. Math. Soc. 40 (1936), no. 1, 112–126.MATHMathSciNetGoogle Scholar
  5. [Al38]
    [Al38] A. A. Albert, A note on normal division algebras of prime degree, Bull. Amer. Math. Soc. 44 (1938), no. 10, 649–652.MathSciNetGoogle Scholar
  6. [Al61]
    A. A. Albert, Structure of Algebras, Amer. Math. Soc. Colloq. Publ., Vol. 24, Amer. Math. Soc., Providence, RI, 1961, revised printing.Google Scholar
  7. [Al72]
    A. A. Albert, Tensor products of quaternion algebras, Proc. Amer. Math. Soc. 35 (1972), 65–66.MATHMathSciNetGoogle Scholar
  8. [AlSc]
    E. S. Allman, M. M. Schacher, Division algebras with PSL(2, q)-Galois maximal subfields, J. Algebra 240 (2001), no. 2, 808–821.MATHMathSciNetGoogle Scholar
  9. [Am55]
    S. A. Amitsur, Generic splitting fields of central simple algebras, Ann. of Math. (2) 62 (1955), 8–43.MathSciNetGoogle Scholar
  10. [Am72]
    S. A. Amitsur, On central division algebras, Israel J. Math. 12 (1972), 408–422.MATHMathSciNetGoogle Scholar
  11. [Am82]
    S. A. Amitsur, Division algebras. A survey, in: Algebraists’ Homage: Papers in Ring Theory and Related topics (New Haven, CN, 1981), Contemp. Math., vol. 13, Amer. Math. Soc., Providence, RI, 1982, pp. 3–26.Google Scholar
  12. [Am91]
    S. A. Amitsur, Galois splitting fields of a universal division algebra J. Algebra, 143 (1991) 236–245.MATHMathSciNetGoogle Scholar
  13. [AmRT]
    S. A. Amitsur, L. H. Rowen, J.-P. Tignol, Division algebras of degree 4 and 8 with involution, Israel J. Math. 33 (1979), 133–148.MATHMathSciNetGoogle Scholar
  14. [AmSa]
    S. A. Amitsur, D. J. Saltman, Generic abelian crossed products and p-algebras, J. Algebra 51 (1978), 76–87.MATHMathSciNetGoogle Scholar
  15. [ArJa]
    [ArJa] R. Aravire, B. Jacob, Relative Brauer groups in characteristic p, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1265–1273.MATHMathSciNetGoogle Scholar
  16. [Ar82]
    M. Artin, Brauer–Severi varieties, in: Brauer Groups in Ring Theory and Algebraic Geometry (Wilrijk, 1981), Lecture Notes in Math., Vol. 917, Springer-Verlag, Berlin, 1982, pp. 194–210.Google Scholar
  17. [ArSD]
    M. Artin, H. P. F. Swinnerton-Dyer, The Shafarevich–Tate conjecture for pencils of elliptic curves on K3 surfaces, Invent. Math. 20 (1973), 249–266.MATHMathSciNetGoogle Scholar
  18. [Ba]
    S. Baek, Invariants of simple algebras, PhD thesis, UCLA, 2010.Google Scholar
  19. [BaM09]
    S. Baek, A. Merkurjev, Invariants of simple algebras, Manuscripta Math. 129 (2009), no. 4, 409–421.MATHMathSciNetGoogle Scholar
  20. [BaM10]
    S. Baek, A. Merkurjev, Essential dimension of central simple algebras, Acta Math. (to appear).Google Scholar
  21. [BayL]
    E. Bayer-Fluckiger, H. W. Lenstra, Jr., Forms in odd degree extensions and self-dual normal bases, Amer. J. Math. 112 (1990), no. 3, 359–373.MATHMathSciNetGoogle Scholar
  22. [BayST]
    E. Bayer-Fluckiger, D. B. Shapiro, J.-P. Tignol, Hyperbolic involutions, Math. Z. 214 (1993), no. 3, 461–476.MATHMathSciNetGoogle Scholar
  23. [BecH]
    K. J. Becher, D. W. Hoffmann, Symbol lengths in Milnor K -theory, Homology, Homotopy Appl. 6 (2004), no. 1, 17–31.MATHMathSciNetGoogle Scholar
  24. [Be98]
    E. Beneish, Induction theorems on the stable rationality of the center of the ring of generic matrices, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3571–3585.MATHMathSciNetGoogle Scholar
  25. [Be05]
    E. Beneish, Centers of generic algebras with involution, J. Algebra 294 (2005), no. 1, 41–50.MATHMathSciNetGoogle Scholar
  26. [BerF]
    G. Berhuy, G. Favi, Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003), 279–330.MATHMathSciNetGoogle Scholar
  27. [BerFT]
    G. Berhuy, C. Frings, J.-P. Tignol, Galois cohomology of the classical groups over imperfect fields, J. Pure Appl. Algebra 211 (2007), 307–341.MATHMathSciNetGoogle Scholar
  28. [BesL]
    C. Bessenrodt, L. Le Bruyn, Stable rationality of certain PGLn -quotients, Invent. Math. 104 (1991), no. 1, 179–199.MATHMathSciNetGoogle Scholar
  29. [BourA]
    N. Bourbaki, Algebra II, Springer-Verlag, New York, 1988.Google Scholar
  30. [BourC]
    N. Bourbaki, Commutative Algebra, Chaps. 1–7, Springer-Verlag, New York, 1988.Google Scholar
  31. [Br38]
    R. Brauer, On normal division algebras of index 5, Proc. Natl. Acad. Sci. USA 24 (1938), no. 6, 243–246.MathSciNetGoogle Scholar
  32. [BrN]
    R. Brauer, E. Noether, Über minimale Zerfällungskörper irreduzibler Darstellungen, Sitz. Akad. Berlin (1927), 221–228.Google Scholar
  33. [BRV]
    P. Brosnan, Z. Reichstein, A. Vistoli, Essential dimension, spinor groups, and quadratic forms, Ann. of Math. (2) 171 (2010), no. 1, 533–544.MATHMathSciNetGoogle Scholar
  34. [BR]
    A. Brumer, M. Rosen, On the size of the Brauer group, Proc. Amer. Math. Soc. 19 (1968), 707–711.MATHMathSciNetGoogle Scholar
  35. [B95]
    E. S. Brussel, Noncrossed products and nonabelian crossed products over ℚ(t) and ℚ((t)), Amer. J. Math. 117 (1995), no. 2, 377–393.MATHMathSciNetGoogle Scholar
  36. [B96]
    E. S. Brussel, Division algebras not embeddable in crossed products, J. Algebra 179 (1996), no. 2, 631–655.MATHMathSciNetGoogle Scholar
  37. [B00]
    E. S. Brussel, An arithmetic obstruction to division algebra decomposability, Proc. Amer. Math. Soc. 128 (2000), no. 8, 2281–2285.MATHMathSciNetGoogle Scholar
  38. [B01]
    E. S. Brussel, The division algebras and Brauer group of a strictly Henselian field, J. Algebra 239 (2001), no. 1, 391–411.MATHMathSciNetGoogle Scholar
  39. [B10]
    E. S. Brussel, On Saltman’s p-adic curves papers, in: Quadratic Forms, Linear Algebraic Groups, and Cohomology (J.-L. Colliot-Thélène, S. Garibaldi, R. Sujatha, V. Suresh, eds.), Dev. Math., Vol. 18, Springer, New York, 2010, pp. 13–38.Google Scholar
  40. [BMT]
    E. Brussel, K. McKinnie, E. Tengan, Indecomposable and noncrossed product division algebras over function fields of smooth p-adic curves, arxiv:0907.0670, July 2009.
  41. [BT]
    E. Brussel, E. Tengan, Division algebras of prime period over function fields of p-adic curves (tame case ), arxiv.org:1003.1906, 2010.
  42. [BuRe]
    J. Buhler, Z. Reichstein, On the essential dimension of a finite group, Compos. Math. 106 (1997), no. 2, 159–179.MATHMathSciNetGoogle Scholar
  43. [Châ]
    F. Châtelet, Variations sur un thème de H. Poincaré, Ann. Sci. École Norm. Sup. 61 (1944), no. 3, 249–300.Google Scholar
  44. [CS]
    D. Chillag, J. Sonn, Sylow-metacyclic groups and ℚ-admissibility, Israel J. Math. 40 (1981), nos. 3–4, 307–323.Google Scholar
  45. [CT]
    J.-L. Colliot-Thélène, Die Brauersche Gruppe; ihre Verallgemeinerungen und Anwendungen in der Arithmetischen Geometrie, Brauer Tagung (Stuttgart, March 2001), http://www.math.u-psud.fr/~colliot/brauer.ps.
  46. [CTGSS]
    J.-L. Colliot-Thélène, S. Garibaldi, R. Sujatha, V. Suresh (eds.), Quadratic Forms, Linear Algebraic Groups, and Cohomology, Dev. Math., Vol. 18, Springer, New York, 2010.Google Scholar
  47. [dJ]
    A. J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. J. 123 (2004), no. 1, 71–94.MATHMathSciNetGoogle Scholar
  48. [Dr]
    P. K. Draxl, Skew Fields, London Math. Soc. Lecture Note Ser., Vol. 81, Cambridge University Press, Cambridge, 1983.Google Scholar
  49. [Ef]
    I. Efrat, On fields with finite Brauer groups, Pacific J. Math. 177 (1997), no. 1, 33–46.MathSciNetGoogle Scholar
  50. [EKM]
    R. S. Elman, N. Karpenko, A. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, Amer. Math. Soc., Providence, RI, 2008.MATHGoogle Scholar
  51. [FaF]
    G. Favi, M. Florence, Tori and essential dimension, J. Algebra 319 (2008), no. 9, 3885–3900.MATHMathSciNetGoogle Scholar
  52. [FS]
    B. Fein, M. M. Schacher, Brauer groups of fields algebraic over ℚ, J. Algebra 43 (1976), no. 1, 328–337.MATHMathSciNetGoogle Scholar
  53. [FSS]
    B. Fein, D. J. Saltman, M. M. Schacher, Crossed products over rational function fields, J. Algebra 156 (1993), no. 2, 454–493.MATHMathSciNetGoogle Scholar
  54. [FeFe]
    P. Feit, W. Feit, The K -admissibility of SL(2; 5), Geom. Dedicata 36 (1990), no. 1, 1–13.MATHMathSciNetGoogle Scholar
  55. [Fe94]
    W. Feit, The ℚ-admissibility of 2A 6 and 2A 7, in: Algebraic Geometry and its Applications (West Lafayette, IN, 1990), Springer, New York, 1994, pp. 197–202.Google Scholar
  56. [Fe02]
    W. Feit, SL(2; 11) is-admissible, J. Algebra 257 (2002), no. 2, 244–248.MATHMathSciNetGoogle Scholar
  57. [Fe04]
    W. Feit, PSL2(11) is admissible for all number fields, in: Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), Springer, Berlin, 2004, pp. 295–299.Google Scholar
  58. [FeV]
    W. Feit, P. Vojta, Examples of some-admissible groups, J. Number Theory 26 (1987), no. 2, 210–226.MATHMathSciNetGoogle Scholar
  59. [Ford]
    T. J. Ford, Every finite abelian group is the Brauer group of a ring, Proc. Amer. Math. Soc. 82 (1981), no. 3, 315–321.MATHMathSciNetGoogle Scholar
  60. [Form]
    E. Formanek, The ring of generic matrices, J. Algebra 258 (2002), 310–320.MATHMathSciNetGoogle Scholar
  61. [G]
    S. Garibaldi, Cohomological Invariants: Exceptional Groups and Spin Groups, with an appendix by Detlev W. Hoffmann, Mem. Amer. Math. Soc., Vol. 200, no. 937, Amer. Math. Soc., Providence, RI, 2009.Google Scholar
  62. [G09]
    S. Garibaldi, Orthogonal involutions on algebras of degree 16 and the Killing form of E 8, with an appendix by K. Zainoulline, in: Quadratic Forms–Algebra, Arithmetic, and Geometry (R. Baeza, W.K. Chan, D.W. Hoffmann, R. Schulze-Pillot, eds.), Contemp. Math., Vol. 493, Amer. Math. Soc, Providence, RI, 2009, pp. 131–162.Google Scholar
  63. [GMS]
    S. Garibaldi, A. Merkurjev, J-P. Serre, Cohomological invariants in Galois cohomology, Univ. Lecture Ser., Vol. 28, Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  64. [GS]
    S. Garibaldi, D. J. Saltman, Quaternion algebras with the same subfields, in: Quadratic Forms, Linear Algebraic Groups, and Cohomology (J.-L. Colliot-Thélène, S. Garibaldi, R. Sujatha, V. Suresh, eds.), Dev. Math., Vol. 18, Springer, New York, 2010, pp. 217–230.Google Scholar
  65. [Gi]
    P. Gille, Le problème de Kneser–Tits, Astérisque 326 (2009), 39–82.MathSciNetGoogle Scholar
  66. [GiS]
    P. Gille, T. Szamuely, Central Simple Algebras and Galois Cohomology, Cambridge Stud. Adv. Math., Vol. 101, Cambridge University Press, Cambridge, 2006.MATHGoogle Scholar
  67. [Go]
    L. I. Gordon, Normal division algebras of degree four, Master’s thesis, University of Chicago, 1940.Google Scholar
  68. [GoS77]
    B. Gordon, M. M. Schacher, Quartic coverings of a cubic, in: Number Theory and Algebra, Academic Press, New York, 1977, pp. 97–101.Google Scholar
  69. [GoS79]
    B. Gordon, M. M. Schacher, The admissibility of A 5, J. Number Theory 11 (1979), no. 4, 498–504.MATHMathSciNetGoogle Scholar
  70. [Hai]
    D. E. Haile, On dihedral algebras and conjugate splittings, in: Rings, Extensions, and Cohomology (Evanston, IL, 1993), Lecture Notes Pure Appl. Math., Vol. 159, Dekker, New York, 1994, pp. 107–111.Google Scholar
  71. [HKRT]
    D. Haile, M.-A. Knus, M. Rost, J.-P. Tignol, Algebras of odd degree with involution, trace forms and dihedral extensions, Israel J. Math. 96 (1996), 299–340.MATHMathSciNetGoogle Scholar
  72. [Han]
    T. Hanke, A twisted Laurent series ring that is a noncrossed product, Israel J. Math. 150 (2005), 199–203.MATHMathSciNetGoogle Scholar
  73. [HHK09]
    D. Harbater, J. Hartmann, D. Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231–263.MATHMathSciNetGoogle Scholar
  74. [HHK]
    D. Harbater, J. Hartmann, D. Krashen, Patching subfields of division algebras, Trans. Amer. Math. Soc. (to appear).Google Scholar
  75. [HLR]
    G. Harder, R. P. Langlands, M. Rapoport, Algebraische Zyklen auf Hilbert–Blumenthal Flächen, J. Reine Angew. Math. 366 (1986), 53–120.MATHMathSciNetGoogle Scholar
  76. [Has]
    H. Hasse, Existenz gewisser algebraischer Zahlkörper, Sitz. Akad. Berlin (1927), 229–234.Google Scholar
  77. [He]
    I. N. Herstein, Noncommutative Rings, Carus Math. Monogr. Vol. 15, Math. Assoc. Amer., Washington, DC, 1968.Google Scholar
  78. [HS]
    M. Hindry, J. H. Silverman, Diophantine Geometry, Graduate Texts in Mathematics, Vol. 201, Springer-Verlag, New York, 2000.MATHGoogle Scholar
  79. [Il]
    L. Illusie, Complexe de Rham–Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. 12 (1979), no. 4, 501–661.MATHMathSciNetGoogle Scholar
  80. [J]
    B. Jacob, Indecomposable division algebras of prime exponent, J. Reine Angew. Math. 413 (1991), 181–197.MATHMathSciNetGoogle Scholar
  81. [JW86]
    B. Jacob, A. Wadsworth, A new construction of noncrossed product algebras, Trans. Amer. Math. Soc. 293 (1986), no. 2, 693–721.MATHMathSciNetGoogle Scholar
  82. [JW93]
    B. Jacob, A. Wadsworth, Division algebras with no common subfields, Israel J. Math. 83 (1993), no. 3, 353–360.MATHMathSciNetGoogle Scholar
  83. [Ja]
    N. Jacobson, Finite-Dimensional Division Algebras over Fields, Springer-Verlag, Berlin, 1996.MATHGoogle Scholar
  84. [JLY]
    C. U. Jensen, A. Ledet, N. Yui, Generic Polynomials. Constructive Aspects of the Inverse Galois Problem, Math. Sci. Res. Inst. Publ., Vol. 45, Cambridge University Press, Cambridge, 2002.MATHGoogle Scholar
  85. [K90]
    B. Kahn, Quelques remarques sur le u-invariant, Sémin. Théor. Nombres Bordeaux (2) 2 (1990), 155–161; erratum: (2) 3 (1991), 247.Google Scholar
  86. [K00]
    B. Kahn, Comparison of some field invariants, J. Algebra 232 (2000), no. 2, 485–492.MATHMathSciNetGoogle Scholar
  87. [K08]
    B. Kahn, Formes Quadratiques sur un Corps, Soc. Math. France, Paris, 2008.MATHGoogle Scholar
  88. [Ka95]
    N. A. Karpenko, Torsion in CH2 of Severi–Brauer varieties and indecomposability of generic algebras, Manuscripta Math. 88 (1995), no. 1, 109–117.MATHMathSciNetGoogle Scholar
  89. [Ka98]
    N. A. Karpenko, Codimension 2 cycles on Severi–Brauer varieties, K-Theory 13 (1998), no. 4, 305–330.MATHMathSciNetGoogle Scholar
  90. [Ka99]
    N. A. Karpenko, Three theorems on common splitting fields of central simple algebras, Israel J. Math. 111 (1999), 125–141.MATHMathSciNetGoogle Scholar
  91. [Ka00]
    N. A. Karpenko, On anisotropy of orthogonal involutions, J. Ramanujan Math. Soc. 15 (2000), no. 1, 1–22.MATHMathSciNetGoogle Scholar
  92. [Ka09a]
    N. A. Karpenko, Isotropy of orthogonal involutions, November 2009, http://www.math.uni-bielefeld.de/LAG/.
  93. [Ka09b]
    N. A. Karpenko, On isotropy of quadratic pair, in: Quadratic Forms–Algebra, Arithmetic, and Geometry (R. Baeza, W.K. Chan, D.W. Hoffmann, and R. Schulze-Pillot, eds.), Contemp. Math., Vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 211–217.Google Scholar
  94. [Ka10a]
    N. A. Karpenko, Canonical dimension, in Proceedings of the International Congress of Mathematicians 2010, World Scientific, Singapore, 2010.Google Scholar
  95. [Ka10b]
    N. A. Karpenko, Hyperbolicity of orthogonal involutions, with an appendix by J.-P. Tignol, Doc. Math., extra vol. Suslin (2010), 371–392.Google Scholar
  96. [KaM]
    N. A. Karpenko, A. S. Merkurjev, Essential dimension of finite p-groups, Invent. Math. 172 (2008), no. 3, 491–508.MATHMathSciNetGoogle Scholar
  97. [Kat]
    P. I. Katsylo, Stable rationality of fields of invariants of linear representations of the groups PSL6 and PSL12, Math. Notes 48 (1990), no. 2, 751–753.MATHMathSciNetGoogle Scholar
  98. [Ke]
    I. Kersten, Brauergruppen von Körpern, Vieweg, Braunschweig, 1990.MATHGoogle Scholar
  99. [KeR]
    I. Kersten, U. Rehmann, Generic splitting of reductive groups, Tôhoku Math. J. (2) 46 (1994), 35–70.MATHMathSciNetGoogle Scholar
  100. [KS03]
    H. Kisilevsky, J. Sonn, On the n-torsion subgroup of the Brauer group of a number field, J. Théor Nombres de Bordeaux 15 (2003), 199–203.MATHMathSciNetGoogle Scholar
  101. [KS06]
    H. Kisilevsky, J. Sonn, Abelian extensions of global fields with constant local degrees, Math. Res. Lett. 13 (2006), 599–605.MATHMathSciNetGoogle Scholar
  102. [KMRT]
    M.-A. Knus, A. S. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, Amer. Math. Soc., Colloq. Publ., Vol. 44, Amer. Math. Soc., Providence, RI, 1998.Google Scholar
  103. [Kr03]
    D. Krashen, Severi-Brauer varieties of semidirect product algebras, Doc. Math. 8 (2003), 527–546.MATHMathSciNetGoogle Scholar
  104. [Kr10]
    D. Krashen, Corestrictions of algebras and splitting fields, Trans. Amer. Math. Soc. 362 (2010), 4781–4792.MATHMathSciNetGoogle Scholar
  105. [KrM]
    D. Krashen, K. McKinnie, Distinguishing division algebras by finite splitting fields, Manuscripta Math. 134 (2011), 171–182.MATHGoogle Scholar
  106. [Lag]
    A. Laghribi, Isotropie de certaines formes quadratiques de dimensions 7 et 8 sur le corps des fonctions d’une quadrique, Duke Math. J. 85 (1996), no. 2, 397–410.MATHMathSciNetGoogle Scholar
  107. [L]
    T. Y. Lam, On the linkage of quaternion algebras, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), no. 3, 415–418.MATHMathSciNetGoogle Scholar
  108. [LLT]
    T. Y. Lam, D. Leep, J.-P. Tignol, Biquaternion algebras and quartic extensions, Inst. Hautes Études Sci. Publ. Math. (1993), no. 77, 63–102.Google Scholar
  109. [Lan00]
    A. Langer, Zero-cycles on Hilbert–Blumenthal surfaces, Duke Math. J. 103 (2000), no. 1, 131–163.MATHMathSciNetGoogle Scholar
  110. [Lan04]
    A. Langer, On the Tate conjecture for Hilbert modular surfaces in finite characteristic, J. Reine Angew. Math. 570 (2004), 219–228.MATHMathSciNetGoogle Scholar
  111. [Le]
    L. Le Bruyn, Centers of generic division algebras, the rationality problem 1965–1990, Israel J. Math. 76 (1991), 97–111.MATHMathSciNetGoogle Scholar
  112. [Led]
    A. Ledet, Finite groups of essential dimension one, J. Algebra 311 (2007), no. 1, 31–37.MATHMathSciNetGoogle Scholar
  113. [Lem]
    N. Lemire, Essential dimension of algebraic groups and integral representations of Weyl groups, Transform. Groups 9 (2004), no. 4, 337–379.MATHMathSciNetGoogle Scholar
  114. [Li]
    S. Liedahl, K -admissibility of wreath products of cyclic p-groups, J. Number Theory 60 (1996), no. 2, 211–232.MATHMathSciNetGoogle Scholar
  115. [Lie]
    M. Lieblich, Twisted sheaves and the period-index problem, Compos. Math. 144 (2008), 1–31.MATHMathSciNetGoogle Scholar
  116. [LLR04]
    Q. Liu, D. Lorenzini, M. Raynaud, Néron models, Lie algebras, and reduction of curves of genus one, Invent. Math. 157 (2004), no. 3, 455–518.MATHMathSciNetGoogle Scholar
  117. [LLR05]
    Q. Liu, D. Lorenzini, M. Raynaud, On the Brauer group of a surface, Invent. Math. 159 (2005), no. 3, 673–676.MATHMathSciNetGoogle Scholar
  118. [LRRS]
    M. Lorenz, Z. Reichstein, L. H. Rowen, D. J. Saltman, Fields of definition for division algebras, J. London Math. Soc. (2) 68 (2003), no. 3, 651–670.Google Scholar
  119. [LMMR]
    R. Lötscher, M. MacDonald, A. Meyer, Z. Reichstein, Essential p-dimension of algebraic tori, arXiv:0910.5574v1, 2009.
  120. [Mam]
    P. Mammone, On the tensor product of division algebras, Arch. Math. (Basel) 58 (1992), no. 1, 34–39.MATHMathSciNetGoogle Scholar
  121. [MamM]
    P. Mammone, A. Merkurjev, On the corestriction of p n -symbol, Israel J. Math. 76 (1991), nos. 1–2, 73–79.MATHMathSciNetGoogle Scholar
  122. [MamT]
    P. Mammone, J.-P. Tignol, Dihedral algebras are cyclic, Proc. Amer. Math. Soc. 101 (1987), no. 2, 217–218.MATHMathSciNetGoogle Scholar
  123. [Mat]
    E. Matzri, All dihedral algebras of degree 5 are cyclic, Proc. Amer. Math. Soc. 136 (2008), 1925–1931.MATHMathSciNetGoogle Scholar
  124. [McK07]
    K. McKinnie, Prime to p extensions of the generic abelian crossed product, J. Algebra 317 (2007), no. 2, 813–832.MATHMathSciNetGoogle Scholar
  125. [McK08]
    K. McKinnie, Indecomposable p-algebras and Galois subfields in generic abelian crossed products, J. Algebra 320 (2008), no. 5, 1887–1907.MATHMathSciNetGoogle Scholar
  126. [M81]
    А. С. Меркуръев, О символе норменното вычета степени два, ДАН СССР 261 (1981), no. 3, 542–547. Engl. transl.: A. S. Merkurjev, On the norm residue symbol of degree 2, Soviet Math. Dokl. 24 (1981), 546–551.Google Scholar
  127. [M83]
    A. S. Merkurjev, Brauer groups of fields, Comm. Algebra 11 (1983), 2611–2624.MATHMathSciNetGoogle Scholar
  128. [M85]
    А. С. Меркуръев, Делимые группы Брауэра, УМН 40 (1985), no. 2(242), 213–214. [A. S. Merkurjev, Divisible Brauer groups, Uspekhi Mat. Nauk 40 (1985), no. 2(242), 213–214 (Russian).]Google Scholar
  129. [M86]
    А. С. Меркуръев, О строении группы Брауэра полей, Иэв. АН СССР, сер. мат. 49 (1985), no. 4, 828–846. Engl. transl.: A. S. Merkurjev, On the structure of the Brauer group of fields, Math. USSR-Izv. 27 (1986), 141–157.Google Scholar
  130. [M92]
    А. С. Меркуръев, Простые алгебры и квадратичные формы, Изв. АН СССР, сер. мат. 55 (1991), no. 1, 218–224. Engl. transl.: A. S. Merkurjev, Simple algebras and quadratic forms, Math. USSR-Izv. 38 (1992), no. 1, 215–221.Google Scholar
  131. [M93]
    A. S. Merkurjev, Generic element in SK 1 for simple algebras, K-Theory 7 (1993), 1–3.MATHMathSciNetGoogle Scholar
  132. [M06]
    A. S. Merkurjev, The group SK 1 for simple algebras, K-Theory 37 (2006), no. 3, 311–319.MATHMathSciNetGoogle Scholar
  133. [M10]
    A. S. Merkurjev, Essential p-dimension of PGLp 2 , J. Amer. Math. Soc. 23 (2010), 693–712.MATHMathSciNetGoogle Scholar
  134. [Ma]
    A. S. Merkurjev, A lower bound on the essential dimension of simple algebras, Algebra & Number Theory (to appear).Google Scholar
  135. [MPW96]
    A. S. Merkurjev, I. Panin, A. R. Wadsworth, Index reduction formulas for twisted flag varieties, I, K-Theory 10 (1996), 517–596.MATHMathSciNetGoogle Scholar
  136. [MPW98]
    A. S. Merkurjev, I. Panin, A. R. Wadsworth, Index reduction formulas for twisted flag varieties, II, K-Theory 14 (1998), no. 2, 101–196.MATHMathSciNetGoogle Scholar
  137. [MS83]
    А. С. Меркуръев, А. А. Суслин, К-когомологии многообразий Севери-Брауэра и гомомрфизм норменного вычета, Изв. АН СССР, сер. мат. 46 (1982), no. 5, 1011_1046. Engl. transl.: A. S. Merkurjev, A. A. Suslin, K -cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR Izv. 21 (1983), no. 2, 307–340.Google Scholar
  138. [MeRe]
    A. Meyer, Z. Reichstein, An upper bound on the essential dimension of a central simple algebra, J. Algebra (2009) (in press), doi: 10.1016/j.jalgebra.2009.09.019.
  139. [Mi68]
    J. S. Milne, The Tate Šafarevič group of a constant abelian variety, Invent. Math. 6 (1968), 91–105.MATHMathSciNetGoogle Scholar
  140. [Mi70]
    J. S. Milne, The Brauer group of a rational surface, Invent. Math. 11 (1970), 304–307.MATHMathSciNetGoogle Scholar
  141. [Mi75]
    J. S. Milne, On a conjecture of Artin and Tate, Ann. of Math. (2) 102 (1975), no. 3, 517–533.Google Scholar
  142. [Mi80]
    J. S. Milne, Étale Cohomology, Princeton University Press, Princeton, NJ, 1980. Russian transl.: Дж. Милн, Зтальные когомологии, Мир, М., 1983.Google Scholar
  143. [MuRa]
    V. K. Murty, D. Ramakrishnan, Period relations and the Tate conjecture for Hilbert modular surfaces, Invent. Math. 89 (1987), no. 2, 319–345.MATHMathSciNetGoogle Scholar
  144. [N]
    T. Nakayama, Divisionalgebren über diskret bewerteten perfekten Körpen, J. Reine Angew. Math. 178 (1938), 11–13.Google Scholar
  145. [Ny]
    N. O. Nygaard, The Tate conjecture for ordinary K3 surfaces over finite fields, Invent. Math. 74 (1983), no. 2, 213–237.MATHMathSciNetGoogle Scholar
  146. [NyO]
    N. Nygaard, A. Ogus, Tate’s conjecture for K3 surfaces of finite height, Ann. of Math. (2) 122 (1985), no. 3, 461–507.Google Scholar
  147. [PSS93]
    R. Parimala, R. Sridharan, V. Suresh, A question on the discriminants of involutions of central division algebras, Math. Ann. 297 (1993), 575–580.MATHMathSciNetGoogle Scholar
  148. [PSS01]
    R. Parimala, R. Sridharan, V. Suresh, Hermitian analogue of a theorem of Springer, J. Algebra 243 (2001), no. 2, 780–789.MATHMathSciNetGoogle Scholar
  149. [PS99]
    R. Parimala, V. Suresh, Isotropy of quadratic forms over function fields of p-adic curves, Publ. Math. Inst. Hautes Études Sci. 88 (1998), 129–150.MATHMathSciNetGoogle Scholar
  150. [PS05]
    R. Parimala, V. Suresh, On the length of a quadratic form, in: Algebra and Number Theory, Hindustan Book Agency, Delhi, 2005, pp. 147–157.Google Scholar
  151. [PS10]
    R. Parimala, V. Suresh, The u-invariant of the function fields of p-adic curves, Ann. of Math. (2) 172 (2010), no. 2, 1391–1405.Google Scholar
  152. [Pi]
    R. S. Pierce, Associative Algebras, Graduate Texts in Mathematics, Vol. 88, Springer-Verlag, New York, 1982. Russian transl.: Р. Пирс, Ассоциативные алгебры, Мир, М., 1986.Google Scholar
  153. [Pl]
    В. П. Платонов, О проблеме Таннака-Артина, ДАН СССР 221 (1975), no. 5, 1038_1041. Engl. transl.: V. P. Platonov, On the Tannaka–Artin problem, Soviet Math. Dokl. 16 (1975), no. 2, 468–473.Google Scholar
  154. [PooS]
    B. Poonen, M. Stoll, The Cassels–Tate pairing on polarized abelian varieties, Ann. of Math. (2) 150 (1999), no. 3, 1109–1149.Google Scholar
  155. [Po]
    C. Popescu, Torsion subgroups of Brauer groups and extensions of constant local degree for global function fields, J. Number Theory 115 (2005), 27–44.MATHMathSciNetGoogle Scholar
  156. [PoSW]
    C. Popescu, J. Sonn, A. Wadsworth, n-torsion of Brauer groups of abelian extensions, J. Number Theory 125 (2007), 26–38.MATHMathSciNetGoogle Scholar
  157. [PraR]
    G. Prasad, A. S. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math. Inst. Hautes Études Sci. 109 (2009), no. 1, 113–184.MATHMathSciNetGoogle Scholar
  158. [Pro]
    C. Procesi, Non-commutative affine rings, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 8 (1967), 237–255.Google Scholar
  159. [RR]
    A. Rapinchuk, I. Rapinchuk, On division algebras having the same maximal subfields, Manuscripta Math. 132 (2010), nos. 3–4, 273–293.MATHMathSciNetGoogle Scholar
  160. [Re99]
    Z. Reichstein, On a theorem of Hermite and Joubert, Canad. J. Math. 51 (1999), no. 1, 69–95.MATHMathSciNetGoogle Scholar
  161. [Re00]
    Z. Reichstein, On the notion of essential dimension for algebraic groups, Transform. Groups 5 (2000), no. 3, 265–304.MATHMathSciNetGoogle Scholar
  162. [Re10]
    Z. Reichstein, Essential dimension, in: Proceedings of the International Congress of Mathematicians 2010, World Scientific, Singapore, 2010.Google Scholar
  163. [ReY00]
    Z. Reichstein, B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for G-varieties, with an appendix by J. Kollár, E. Szabó, Canad. J. Math. 52 (2000), no. 5, 1018–1056.MATHMathSciNetGoogle Scholar
  164. [ReY01]
    Z. Reichstein, B. Youssin, Splitting fields of G-varieties, Pacific J. Math. 200 (2001), no. 1, 207–249.MATHMathSciNetGoogle Scholar
  165. [Ri75]
    L. J. Risman, Zero divisors in tensor products of division algebras, Proc. Amer. Math. Soc. 51 (1975), 35–36.MATHMathSciNetGoogle Scholar
  166. [Ri77]
    L. J. Risman, Cyclic algebras, complete fields, and crossed products, Israel J. Math. 28 (1977), nos. 1–2, 113–128.MATHMathSciNetGoogle Scholar
  167. [Roq64]
    P. Roquette, Isomorphisms of generic splitting fields of simple algebras, J. Reine Angew. Math. 214/215 (1964), 207–226.MathSciNetGoogle Scholar
  168. [Roq04]
    P. Roquette, The Brauer–Hasse–Noether Theorem in Historical Perspective, Schr. Math.-Phys. Klasse Heidelb. Akad. Wiss., no. 15, Springer-Verlag, Berlin, 2004.Google Scholar
  169. [Ros]
    S. Rosset, Group extensions and division algebras, J. Algebra 53 (1978), no. 2, 297–303.MATHMathSciNetGoogle Scholar
  170. [R]
    M. Rost, Computation of some essential dimensions, preprint, 2000.Google Scholar
  171. [RST]
    M. Rost, J-P. Serre, J.-P. Tignol, La forme trace d’une algèbre simple centrale de degré 4, C. R. Math. Acad. Sci. Paris 342 (2006), 83–87.MATHMathSciNetGoogle Scholar
  172. [Ro78]
    L. H. Rowen, Central simple algebras, Israel J. Math. 29 (1978), nos. 2–3, 285–301.MATHMathSciNetGoogle Scholar
  173. [Ro81]
    L. H. Rowen, Division algebra counterexamples of degree 8, Israel J. Math. 38 (1981), 51–57.MATHMathSciNetGoogle Scholar
  174. [Ro82]
    L. H. Rowen, Cyclic division algebras, Israel J. Math. 41 (1982), no. 3, 213–234.MATHMathSciNetGoogle Scholar
  175. [Ro84]
    L. H. Rowen, Division algebras of exponent 2 and characteristic 2, J. Algebra 90 (1984), 71–83.MATHMathSciNetGoogle Scholar
  176. [Ro88]
    L. H. Rowen, Ring Theory, Vol. II, Pure Appl. Math., Vol. 128, Academic Press, Boston, MA, 1988.Google Scholar
  177. [Ro91]
    L. H. Rowen, Ring Theory, Student edition, Academic Press, New York, 1991.MATHGoogle Scholar
  178. [Ro99]
    L. H. Rowen, Are p-algebras having cyclic quadratic extensions necessarily cyclic?, J. Algebra 215 (1999), 205–228.MATHMathSciNetGoogle Scholar
  179. [RoS82]
    L. H. Rowen, D. J. Saltman, Dihedral algebras are cyclic, Proc. Amer. Math. Soc. 84 (1982), no. 2, 162–164.MATHMathSciNetGoogle Scholar
  180. [RoS92]
    L. H. Rowen, D. J. Saltman, Prime to p extensions, Israel J. Math. 78 (1992), 197–207.MATHMathSciNetGoogle Scholar
  181. [RoS92]
    L. H. Rowen, D. J. Saltman, Semidirect product division algebras, Israel J. Math. 96 (1996), 527–552.MATHMathSciNetGoogle Scholar
  182. [Ru]
    A. Ruozzi, Essential p-dimension of PGLn, J. Algebra 328 (2011), 488–494.Google Scholar
  183. [Sah]
    C. H. Sah, Symmetric bilinear forms and quadratic forms, J. Algebra 20 (1972), 144–160.MATHMathSciNetGoogle Scholar
  184. [S77]
    D. J. Saltman, Splittings of cyclic p-algebras, Proc. Amer. Math. Soc. 62 (1977), 223–228.MATHMathSciNetGoogle Scholar
  185. [S78a]
    D. J. Saltman, Noncrossed product p-algebras and Galois p-extensions, J. Algebra 52 (1978), 302–314.MATHMathSciNetGoogle Scholar
  186. [S78b]
    D. J. Saltman, Noncrossed products of small exponent, Proc. Amer. Math. Soc. 68 (1978), 165–168.MATHMathSciNetGoogle Scholar
  187. [S79]
    D. J. Saltman, Indecomposable division algebras, Comm. Algebra 7 (1979), no. 8, 791–817.MATHMathSciNetGoogle Scholar
  188. [S80]
    D. J. Saltman, On p-power central polynomials, Proc. Amer. Math. Soc. 78 (1980), 11–13.MATHMathSciNetGoogle Scholar
  189. [S84]
    D. J. Saltman, Review: John Dauns, “A Concrete Approach to Division Rings” and P.K. Draxl, “Skew Fields”, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 214–221.MathSciNetGoogle Scholar
  190. [S85]
    D. J. Saltman, The Brauer group and the center of generic matrices, J. Algebra 97 (1985), 53–67.MATHMathSciNetGoogle Scholar
  191. [S92]
    D. J. Saltman, Finite dimensional division algebras, in: Azumaya Algebras, Actions, and Modules, Contemp. Math., Vol. 124, Amer. Math. Soc., Providence, RI, 1992, pp. 203–214.Google Scholar
  192. [S97a]
    D. J. Saltman, Division algebras over p-adic curves, J. Ramanujan Math. Soc. 12 (1997), 25–47, see also the erratum [S98] and survey [B10].Google Scholar
  193. [S97b]
    D. J. Saltman, H 3 and generic matrices, J. Algebra 195 (1997), 387–422.MATHMathSciNetGoogle Scholar
  194. [S98]
    D. J. Saltman, Correction to division algebras over p-adic curves, J. Ramanujan Math. Soc. 13 (1998), 125–129.MATHMathSciNetGoogle Scholar
  195. [S99]
    D. J. Saltman, Lectures on Division Algebras, CBMS Reg. Conf. Ser. Math., Vol. 94, Amer. Math. Soc., Providence, RI, 1999.Google Scholar
  196. [S01]
    D. J. Saltman, Amitsur and division algebras, in: Selected Papers of S. A. Amitsur with commentary, Part 2, Amer. Math. Soc., Providence, RI, 2001, pp. 109–115.Google Scholar
  197. [S02]
    D. J. Saltman, Invariant fields of symplectic and orthogonal groups, J. Algebra 258 (2002), no. 2, 507–534.MATHMathSciNetGoogle Scholar
  198. [S07]
    D. J. Saltman, Cyclic algebras over p-adic curves, J. Algebra 314 (2007), 817–843.MATHMathSciNetGoogle Scholar
  199. [ST]
    D. J. Saltman, J.-P. Tignol, Generic algebras with involution of degree 8m, J. Algebra 258 (2002), no. 2, 535–542.MATHMathSciNetGoogle Scholar
  200. [Sc]
    M. M. Schacher, Subfields of division rings, I, J. Algebra 9 (1968), 451–477.MATHMathSciNetGoogle Scholar
  201. [ScSm]
    M. M. Schacher, L. Small, Noncrossed products in characteristic p, J. Algebra 24 (1973), 100–103.MATHMathSciNetGoogle Scholar
  202. [ScSo]
    M. M. Schacher, J. Sonn, K -admissibility of A 6 and A 7, J. Algebra 145 (1992), no. 2, 333–338.MATHMathSciNetGoogle Scholar
  203. [Sch]
    A. Schofield, Matrix invariants of composite size, J. Algebra 147 (1992), no. 2, 345–349.MATHMathSciNetGoogle Scholar
  204. [SchB]
    A. Schofield, M. van den Bergh, The index of a Brauer class on a Brauer–Severi variety, Trans. Amer. Math. Soc. 333 (1992), no. 2, 729–739.MATHMathSciNetGoogle Scholar
  205. [Se95]
    J-P. Serre, Cohomologie Galoisienne: Progrès et problèmes, Astérisque (1995), no. 227, 229–257, Séminaire Bourbaki, Vol. 1993/94, Exp. 783 (= Oe. 166).Google Scholar
  206. [Se08]
    J-P. Serre, Topics in Galois Theory, 2nd ed., with notes by Henri Darmon, Res. Notes Math., Vol. 1, A K Peters, Wellesley, MA, 2008.Google Scholar
  207. [Si]
    A. S. Sivatski, Applications of Clifford algebras to involutions and quadratic forms, Comm. Algebra 33 (2005), no. 3, 937–951.MATHMathSciNetGoogle Scholar
  208. [So]
    J. Sonn, ℚ-admissibility of solvable groups, J. Algebra 84 (1983), no. 2, 411–419.MATHMathSciNetGoogle Scholar
  209. [Sur]
    V. Suresh, Bounding the symbol length in the Galois cohomology of function fields of p-adic curves, Comment. Math. Helv. 85 (2010), no. 2, 337–346.MATHMathSciNetGoogle Scholar
  210. [Sus]
    A. A. Suslin, SK 1 of division algebras and Galois cohomology, Adv. Soviet Math. 4 (1991), 75–101.MathSciNetGoogle Scholar
  211. [Ta65]
    J. Tate, Algebraic cycles and poles of zeta functions, in: Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), Harper & Row, New York, 1965, pp. 93–110. Russian transl.: Д. Тэйт, Алгебраические циклы иполюса дзета-функций, УМН 20 (1965), no. 6, 27–40.Google Scholar
  212. [Ta66a]
    J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134–144. Russian transl.: Д. Тэйт, Эндоморфизмы абелевых многообразий над конечными полями, Математика, сб. перев. 12 (1968), no. 6, 31–40.Google Scholar
  213. [Ta66b]
    J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 1965/1966, Exp. 295–312, no. 306, W. A. Benjamin, New York, 1966, pp. 415–440. Russian transl.: Д. Тэйт, О гипотезах Бёрча и Свиннертона-Дайера и их геометрическом аналоге, Математика, сб. перев. 12 (1968), no. 6, 41–55.Google Scholar
  214. [Te36]
    O. Teichmüller, p-algebren, Deutsche Math. 1 (1936), 362–388.Google Scholar
  215. [Te37]
    O. Teichmüller, Zerfallende zyklische p-algebren, J. Reine Angew. Math. 176 (1937), 157–160.Google Scholar
  216. [T84]
    J.-P. Tignol, On the length of decompositions of central simple algebras in tensor products of symbols, in: Methods in Ring Theory (Antwerp, 1983), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 129, Reidel, Dordrecht, 1984, pp. 505–516.Google Scholar
  217. [T86]
    J.-P. Tignol, Cyclic and elementary abelian subfields of Malcev–Neumann division algebras, J. Pure Appl. Algebra 42 (1986), no. 2, 199–220.MATHMathSciNetGoogle Scholar
  218. [T87]
    J.-P. Tignol, On the corestriction of central simple algebras, Math. Z. 194 (1987), no. 2, 267–274.MATHMathSciNetGoogle Scholar
  219. [T06]
    J.-P. Tignol, La forme seconde trace d’une algèbre simple centrale de degré 4 de caractéristique 2, C. R. Math. Acad. Sci. Paris 342 (2006), 89–92.MATHMathSciNetGoogle Scholar
  220. [TA85]
    J.-P. Tignol, S. A. Amitsur, Kummer subfields of Mal’cev–Neumann division algebras, Israel J. Math. 50 (1985), 114–144.MATHMathSciNetGoogle Scholar
  221. [TA86]
    J.-P. Tignol, S. A. Amitsur, Symplectic modules, Israel J. Math. 54 (1986), no. 3, 266–290.MATHMathSciNetGoogle Scholar
  222. [TW]
    J.-P. Tignol, A. R. Wadsworth, Totally ramified valuations on finite-dimensional division algebras, Trans. Amer. Math. Soc. 302 (1987), no. 1, 223–250.MATHMathSciNetGoogle Scholar
  223. [Ti66]
    J. Tits, Classification of algebraic semisimple groups, in: Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., Vol. IX, Amer. Math. Soc., Providence, RI, 1966, pp. 32–62. Russian transl.: Ж. Титс, Классификация полупростых алгебраических групп, Математика, сб. перев. 12 (1968), no. 2, 110–143.Google Scholar
  224. [Ti78]
    J. Tits, Groupes de Whitehead de groupes algébriques simples sur un corps (d’après V. P. Platonov et al.), Lecture Notes in Math., Vol. 677, Exp. 505, Springer-Verlag, Berlin, 1978, pp. 218–236.Google Scholar
  225. [Tr]
    С. Л. Трегуб, О бирациональной зквивалеалентности многообрзий Брауэра-Севери, УМН 46 (1991), no. 6, 217–218. Engl. transl.: S. L. Tregub, Birational equivalence of Brauer-Severi manifolds, Russian Math. Surveys 46 (1991), no. 6, 229.Google Scholar
  226. [U]
    T. Urabe, The bilinear form of the Brauer group of a surface, Invent. Math. 125 (1996), no. 3, 557–585.MATHMathSciNetGoogle Scholar
  227. [V03]
    U. Vishne, Dihedral crossed products of exponent 2 are abelian, Arch. Math. (Basel) 80 (2003), no. 2, 119–122.MATHMathSciNetGoogle Scholar
  228. [V04]
    U. Vishne, Galois cohomology of fields without roots of unity, J. Algebra 279 (2004), 451–492.MATHMathSciNetGoogle Scholar
  229. [Vo]
    V. E. Voskresenskiĭ, Algebraic Groups and their Birational Invariants, Transl. Math. Monogr., Vol. 179, Amer. Math. Soc., Providence, RI, 1998.Google Scholar
  230. [Wad]
    A. R. Wadsworth, Valuation theory on finite-dimensional division algebras, in: Valuation Theory and its Applications, Vol. I (Saskatoon, SK), Fields Inst. Commun., Vol. 32, Amer. Math. Soc., Providence, RI, 2002, pp. 385–449.Google Scholar
  231. [Wang]
    S. Wang, On the commutator group of a simple algebra, Amer. J. Math. 72 (1950), 323–334.MATHMathSciNetGoogle Scholar
  232. [Wed]
    J. H. M. Wedderburn, On division algebras, Trans. Amer. Math. Soc. 22 (1921), 129–135.MATHMathSciNetGoogle Scholar
  233. [Wei]
    A. Weil, Algebras with involution and the classical groups, J. Indian Math. Soc. 24 (1960), 589–623. Russian transl.: A. Вейль, Алгебры с инволюцией иклассичекие группы, Математика, сб. перев. 7 (1963), no. 4, 31–56.Google Scholar
  234. [Wi34]
    E. Witt, Gegenbeispiel zum Normensatz, Math. Z. 39 (1934), 12–28.MathSciNetGoogle Scholar
  235. [Wi37]
    E. Witt, Zyklische Körper und Algebren der characteristik p vom Grad p n: Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassen-körper der Charakteristik p, J. Reine Angew. Math. 176 (1937), 126–140.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Asher Auel
    • 1
  • Eric Brussel
    • 1
  • Skip Garibaldi
    • 1
  • Uzi Vishne
    • 2
  1. 1.Department of Mathematics & Computer Science Emory UniversityAtlantaUSA
  2. 2.Department of Mathematics Bar-Ilan UniversityRamat-GanIsrael

Personalised recommendations