On classification of poisson vertex algebras
Article
First Online:
- 89 Downloads
- 9 Citations
Abstract
We describe a conjectural classification of Poisson vertex algebras of CFT type and of Poisson vertex algebras in one differential variable (= scalar Hamiltonian operators).
Keywords
Jacobi Identity Hamiltonian Operator Conformal Weight Integrable Hierarchy Compatible Pair
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [A]А. М. Асташов, Нормальные формы гамцльmонвых оnераmоров в mеорццnоля, ДАН CCCP 270 (1983), 1033–1037. Engl. transl.: A. M. Astashov, Normal forms of Hamiltonian operators in field theory, Sov. Math., Dokl. 27 (1983), 685–689.Google Scholar
- [AV]A. M. Astashov, A. M. Vinogradov, On the structure of Hamiltonian operators in field theory, J. Geom. Phys. 2 (1986), 263–287.CrossRefMathSciNetGoogle Scholar
- [BD]A. Beilinson, V. G. Drinfeld, Chiral Algebras, AMS Colloquium Publications, Vol 51, Amer. Math. Soc., Providence, RI, 2004.Google Scholar
- [BDK]A. Barakat, A. De Sole, V. G. Kac, Poisson vertex algebras in the theory of Hamiltonian equations, Jpn. J. Math. 4 (2009), 141–252.zbMATHCrossRefMathSciNetGoogle Scholar
- [C]D. Cooke, Classification results and Darboux' theorem for low order Hamiltonian operators, J. Math. Phys. 32 (1991), 109–119.zbMATHCrossRefMathSciNetGoogle Scholar
- [C1]D. Cooke, Compatibility conditions for Hamiltonian pairs, J. Math. Phys. 32 (1991), 3071–3076.zbMATHCrossRefMathSciNetGoogle Scholar
- [D]I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, New York, 1993.Google Scholar
- [DK]A. De Sole, V. G. Kac, Finite vs. affine W-algebras, Jpn. J. Math. 1 (2006), 137–261.zbMATHCrossRefMathSciNetGoogle Scholar
- [GD]И. М. Гельфанд, И. Дорфман, Гамцльmонвы оnераmоры ц связанные с нцмц алгебрацкце сmрукmуры, Функц. анал. и его прилож. 13 (1979), no. 4, 13–30. Engl. transl.: I. M. Gelfand, I. Dorfman, Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl. 13 (1980), 248–262.Google Scholar
- [FT]Л. А. Тахтаджяд, Л. Д. Фаддеев, Гомцльmонов nодход в mеорцц солцmоное, Наука, М., 1986. Engl. transl.: L. D. Faddeev, L. A. Takhtadzhyan, The Hamiltonian Methods in the Theory of Solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987.Google Scholar
- [K]V. G. Kac, Vertex Algebras for Beginners, University Lecture Series, Vol. 10, Amer. Math. Soc., Providence, RI, 1996. Second edition, 1998. Russian transl.: В. Г. Кац, Верmексные алгебры для начцнающцх, МЩНМО, M., 2005.Google Scholar
- [Ma]F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156–1162.zbMATHCrossRefMathSciNetGoogle Scholar
- [MSS]A. V. Mikhailov, A. V. Shabat, V. V. Sokolov The symmetry approach to classification of integrable equations, in: V. E. Zakharov, ed., What is Integrabilty?, Springer Series in Non-Linear Dynamics, Springer-Verlag, New York, 1991, pp, 115–184.Google Scholar
- [M]О. И. Мохов, Гамцльmоновы дцфференццальные оnераnоры ц конmакmная геомеmрця, Функц. анал. и его прллож. 21 (1987), no. 3, 53–60. Engl. transl.: O. I. Mokhov, Hamiltonian differential operators and contact geometry, Funct. Anal. Appl. 21 (1987), 217–223.Google Scholar
- [O]P. J. Olver, Darboux' theorem for Hamiltonian operators, J. Differential Equations 71 (1988), 10–33.zbMATHCrossRefMathSciNetGoogle Scholar
- [V]А. М. Виноградов, О гамцльmоновых сmрукmурах в mеорцц nоля, ДАН СССР 241 (1978), 18–21. Engl. transl.: A. M. Vinogradov, On Hamiltonian structures in field theory, Sov. Math., Dokl. 19 (1978), 790–794.Google Scholar
Copyright information
© Springer Science+Business Media, LLC 2010