Advertisement

Transformation Groups

, Volume 15, Issue 4, pp 883–907 | Cite as

On classification of poisson vertex algebras

  • Alberto De SoleEmail author
  • Victor G. Kac
  • Minoru Wakimoto
Article

Abstract

We describe a conjectural classification of Poisson vertex algebras of CFT type and of Poisson vertex algebras in one differential variable (= scalar Hamiltonian operators).

Keywords

Jacobi Identity Hamiltonian Operator Conformal Weight Integrable Hierarchy Compatible Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    А. М. Асташов, Нормальные формы гамцльmонвых оnераmоров в mеорццnоля, ДАН CCCP 270 (1983), 1033–1037. Engl. transl.: A. M. Astashov, Normal forms of Hamiltonian operators in field theory, Sov. Math., Dokl. 27 (1983), 685–689.Google Scholar
  2. [AV]
    A. M. Astashov, A. M. Vinogradov, On the structure of Hamiltonian operators in field theory, J. Geom. Phys. 2 (1986), 263–287.CrossRefMathSciNetGoogle Scholar
  3. [BD]
    A. Beilinson, V. G. Drinfeld, Chiral Algebras, AMS Colloquium Publications, Vol 51, Amer. Math. Soc., Providence, RI, 2004.Google Scholar
  4. [BDK]
    A. Barakat, A. De Sole, V. G. Kac, Poisson vertex algebras in the theory of Hamiltonian equations, Jpn. J. Math. 4 (2009), 141–252.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [C]
    D. Cooke, Classification results and Darboux' theorem for low order Hamiltonian operators, J. Math. Phys. 32 (1991), 109–119.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [C1]
    D. Cooke, Compatibility conditions for Hamiltonian pairs, J. Math. Phys. 32 (1991), 3071–3076.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [D]
    I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, New York, 1993.Google Scholar
  8. [DK]
    A. De Sole, V. G. Kac, Finite vs. affine W-algebras, Jpn. J. Math. 1 (2006), 137–261.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [GD]
    И. М. Гельфанд, И. Дорфман, Гамцльmонвы оnераmоры ц связанные с нцмц алгебрацкце сmрукmуры, Функц. анал. и его прилож. 13 (1979), no. 4, 13–30. Engl. transl.: I. M. Gelfand, I. Dorfman, Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl. 13 (1980), 248–262.Google Scholar
  10. [FT]
    Л. А. Тахтаджяд, Л. Д. Фаддеев, Гомцльmонов nодход в mеорцц солцmоное, Наука, М., 1986. Engl. transl.: L. D. Faddeev, L. A. Takhtadzhyan, The Hamiltonian Methods in the Theory of Solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987.Google Scholar
  11. [K]
    V. G. Kac, Vertex Algebras for Beginners, University Lecture Series, Vol. 10, Amer. Math. Soc., Providence, RI, 1996. Second edition, 1998. Russian transl.: В. Г. Кац, Верmексные алгебры для начцнающцх, МЩНМО, M., 2005.Google Scholar
  12. [Ma]
    F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156–1162.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [MSS]
    A. V. Mikhailov, A. V. Shabat, V. V. Sokolov The symmetry approach to classification of integrable equations, in: V. E. Zakharov, ed., What is Integrabilty?, Springer Series in Non-Linear Dynamics, Springer-Verlag, New York, 1991, pp, 115–184.Google Scholar
  14. [M]
    О. И. Мохов, Гамцльmоновы дцфференццальные оnераnоры ц конmакmная геомеmрця, Функц. анал. и его прллож. 21 (1987), no. 3, 53–60. Engl. transl.: O. I. Mokhov, Hamiltonian differential operators and contact geometry, Funct. Anal. Appl. 21 (1987), 217–223.Google Scholar
  15. [O]
    P. J. Olver, Darboux' theorem for Hamiltonian operators, J. Differential Equations 71 (1988), 10–33.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [V]
    А. М. Виноградов, О гамцльmоновых сmрукmурах в mеорцц nоля, ДАН СССР 241 (1978), 18–21. Engl. transl.: A. M. Vinogradov, On Hamiltonian structures in field theory, Sov. Math., Dokl. 19 (1978), 790–794.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alberto De Sole
    • 1
    Email author
  • Victor G. Kac
    • 2
  • Minoru Wakimoto
    • 1
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Department of MathematicsMITCambridgeUSA

Personalised recommendations