Advertisement

Transformation Groups

, Volume 14, Issue 2, pp 361–386 | Cite as

Trialitarian automorphisms of lie algebras

  • M.-A. Knus
Article
  • 63 Downloads

Abstract

Over an algebraically closed field of characteristic zero simple Lie algebras admit outer automorphisms of order 3 if and only if they are of type D4. Moreover, thereare two conjugacy classes of such automorphisms. Among orthogonal Lie algebras over arbitrary fields of characteristic zero, only orthogonal Lie algebras relative to quadratic norm forms of Cayley algebras admit outer automorphisms of order 3. We give a complete list of conjugacy classes of outer automorphisms of order 3 for orthogonal Lie algebras over arbitrary fields of characteristic zero. For the norm form of a given Cayley algebra, one class is associated with the Cayley algebra and the others with central simple algebras of degree 3 with involution of the second kind such that the cohomological invariant of the involution is the norm form.

Keywords

Conjugacy Class Dynkin Diagram Algebraic Closure Outer Automorphism Central Simple Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [C]
    L. Cadorin, Triality, Master’s thesis, ETH Zürich, 2000.Google Scholar
  2. [E]
    A. Elduque, Symmetric composition algebras, J. Algebra 196 (1997), 283–300.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [EM]
    A. Elduque, H. C. Myung, On exible composition algebras, Comm. Algebra 21 (1993), 2481–2505.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [F]
    J. R. Faulkner, Finding octonion algebras in associative algebras, Proc. Amer. Math. Soc. 104 (1988), 1027–1030.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [H]
    S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, Vol. 80, Academic Press, New York, 1978.Google Scholar
  6. [HKRT]
    D. E. Haile, M.-A. Knus, M. Rost, J.-P. Tignol, Algebras of odd degree with involution, trace forms and dihedral extensions, Israel J. Math. 96 (1996), 299–340.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [J39]
    N. Jacobson, Cayley numbers and simple Lie algebras of type G, Duke Math. J. 5 (1939), 775–783.CrossRefMathSciNetGoogle Scholar
  8. [J62]
    N. Jacobson, Lie Algebras, Dover, New York, 1979, Republication of the 1962 original.Google Scholar
  9. [J64]
    N. Jacobson, Triality and Lie algebras of type D4, Rend. Circ. Mat. Palermo (2) 13 (1964), 129–153.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [JZ]
    Q. Jin, Z. Zhang, On automorphisms of affine Kac–Moody algebras, Comm. Algebra 29 (2001), 2827–2858.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [K69]
    В. Г. Кац, Автоморфизмы конечного порядка полупростых алгебр Ли, Функц. анал. и его прилож. 3 (1969), no. 3, 94–96. English transl.: V. G. Kac, Automorphisms of finite order of semisimple Lie algebras, Funct. Anal. Appl. 3 (1969), 252–254.Google Scholar
  12. [K85]
    V. G. Kac, Infinite-dimensional Lie Algebras, Cambridge University Press, Cambridge, 1985. Russian transl.: В. Г. Кац, Бесконечномерные алгебры Ли, Мир, М., 1993.Google Scholar
  13. [KA]
    I. Kaplansky, Infinite-dimensional quadratic forms admitting composition, Proc. Amer. Math. Soc. 4 (1953), 956–960.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [KMRT]
    M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications, Vol. 44, American Mathematical Society, Providence, RI, 1998.Google Scholar
  15. [KPS]
    M.-A. Knus, R. Parimala, R. Sridharan, On generic triality, in: Algebra, Arithmetic and Geometry, Parts I, II (Mumbai, 2000), Tata Inst. Fund. Res. Stud. Math., Vol. 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 355–404.Google Scholar
  16. [N]
    E. Neher, Lie algebra automorphisms of innite order, preprint, 8 pp., 1979.Google Scholar
  17. [O]
    S. Okubo, Pseudo-quaternion and pseudo-octonion algebras, Hadronic J. 1 (1978) 1250–1278.zbMATHMathSciNetGoogle Scholar
  18. [OO]
    S. Okubo, J. M. Osborn, Algebras with nondegenerate associative symmetric bilinear forms permitting composition, Comm. Algebra 9 (1981), 1233–1261.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [S]
    R. D. Schafer, An Introduction to Nonassociative Algebras, Pure and Applied Mathematics, Vol. 22, Academic Press, New York, 1966.Google Scholar
  20. [SCH]
    W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der mathematischen Wissenschaften, Vol. 270, Springer-Verlag, Berlin, 1985.Google Scholar
  21. [SP]
    T. A. Springer, Linear Algebraic Groups, 2nd ed., Progress in Mathematics, Vol. 9, Birkhäuser, Boston, MA, 1998.Google Scholar
  22. [SV]
    T. A. Springer, F. D. Veldkamp, Octonions, Jordan Algebras and Exceptional Groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.Google Scholar
  23. [T]
    J. Tits, Sur la trialité et les algèbres d’octaves, Acad. Roy. Belg. Bull. Cl. Sci. (5) 44 (1958), 332–350.MathSciNetGoogle Scholar
  24. [VBS]
    F. van der Blij, T. A. Springer, Octaves and triality, Nieuw Arch. Wiskd. (3) 8 (1960), 158–169.zbMATHGoogle Scholar
  25. [WG]
    J. A. Wolf, A. Gray, Homogeneous spaces defined by Lie group automorphisms, J. Differential Geom. 2 (1968), 77–114.zbMATHMathSciNetGoogle Scholar
  26. [WO]
    M. J. Wonenburger, The automorphisms of PO8 + (Q) and PS8 + (Q), Amer. J. Math. 84 (1962), 635–641.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Boston 2008

Authors and Affiliations

  1. 1.ETH Zürich, Mathematik DepartementZürichSwitzerland

Personalised recommendations