Advertisement

Transformation Groups

, Volume 13, Issue 2, pp 215–242 | Cite as

Gluing Affine Torus Actions Via Divisorial Fans

  • Klaus Altmann
  • Jürgen Hausen
  • Hendrik Süss
Article

Abstract

Generalizing the passage from a fan to a toric variety, we provide a combinatorial approach to construct arbitrary effective torus actions on normal, algebraic varieties. Based on the notion of a “proper polyhedral divisor” introduced in earlier work, we develop the concept of a “divisorial fan” and show that these objects encode the equivariant gluing of affine varieties with torus action. We characterize separateness and completeness of the resulting varieties in terms of divisorial fans, and we study examples like \( \mathbb{C} \)*-surfaces and projectivizations of (nonsplit) vector bundles over toric varieties.

Keywords

Vector Bundle Toric Variety Prime Divisor Cotangent Bundle Global Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AH06]
    K. Altmann, J. Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), 557–607zbMATHCrossRefMathSciNetGoogle Scholar
  2. [FKZ05]
    H. Flenner, S. Kaliman, M. Zaidenberg, Completions of \( \mathbb{C} \)*-surfaces, in: Affine Algebraic Geometry, Osaka University Press, Osaka, 2007, pp. 149–201.Google Scholar
  3. [Har77]
    R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York, 1977. Russian tranl.: P. Xapтсхорн, Aлƨебраuческая ƨеомеmpuя, Mиp, M, 1981.Google Scholar
  4. [Ha05]
    J. Hausen, Complete orbit spaces of affine torus actions, to appear in Internat. J. Math., Eprint, arXiv: math AG/0510489.Google Scholar
  5. [KKMS73]
    G. Kempf, F. Knudson, D. Mumford, B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, New York, 1973.Google Scholar
  6. [Kly90]
    A. A. Клячко, Экеuеарuанmные расслоенuя на mорuческuх мноƨообразuях, Изв, AH CCCP, Cep. мaт. 53 (1989), no. 5, 1001–1039. Engl. transl.: A. A. Klyachko, Equivariant bundles on toral varieties, Math. USSR-Izv. 35 (1990), no. 2, 337–375.Google Scholar
  7. [Per04]
    M. Perling, Graded rings and equivariant sheaves on toric varieties, Math. Nachr. 263–64 (2004), 181–197.CrossRefMathSciNetGoogle Scholar
  8. [Su74]
    H. Sumihiro, Equivariant completions, J. Math. Kyoto Univ. 14 (1974), 1–28.zbMATHMathSciNetGoogle Scholar
  9. [Vo07]
    R. Vollmert, Toroidal embeddings and polyhedral divisors, Eprint, arXiv: math.AG/0707.0917v1.Google Scholar

Copyright information

© Birkhäuser Boston 2007

Authors and Affiliations

  1. 1.Fachbereich Mathematik und InformatikFreie Universität Berlin Arnimalle 3BerlinGermany
  2. 2.Mathematisches InstitutUniversität Tübingen Auf der Morgenstelle 10TübingenGermany
  3. 3.Institut für Mathematik LS Algebra und Geometrie Brandenburgische TechnischeUniversität CottbusCottbusGermany

Personalised recommendations