Convergence & rates for Hamilton–Jacobi equations with Kirchoff junction conditions

  • Peter S. MorfeEmail author


We investigate rates of convergence for two approximation schemes of time-independent and time-dependent Hamilton–Jacobi equations with Kirchoff junction conditions. We analyze the vanishing viscosity limit and monotone finite-difference schemes. Following recent work of Lions and Souganidis, we impose no convexity assumptions on the Hamiltonians. For stationary Hamilton–Jacobi equations, we obtain the classical \(\epsilon ^{\frac{1}{2}}\) rate, while we obtain an \(\epsilon ^{\frac{1}{7}}\) rate for approximations of the Cauchy problem. In addition, we present a number of new techniques of independent interest, including a quantified comparison proof for the Cauchy problem and an equivalent definition of the Kirchoff junction condition.


Hamilton–Jacobi equations Junction problems Stratification problems Vanishing viscosity limit Monotone finite difference schemes 

Mathematics Subject Classification

35F20 65N12 65M12 



It is a pleasure to acknowledge P.E. Souganidis for suggesting this problem and for enlightening discussions. Credit is due as well to the anonymous reviewers for their sage advice and for pointing out a number of typos, and to M. Sardarli for helpful comments. The author was partially supported by the National Science Foundation Research Training Group Grant DMS-1246999.


  1. 1.
    Armstrong, S., Cardaliaguet, P.: Stochastic homogenization of quasilinear Hamilton–Jacobi equations and geometric motions. J. Eur. Math. (JEMS) 20–4, 797–864 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Achdou, Y., et al.: Finite Horizon Mean Field Games on Networks. arXiv preprint (2019): arXiv:1903.02761
  3. 3.
    Achdou, Y., et al.: Hamilton–Jacobi equations constrained on networks. NoDEA Nonlinear Differ. Eqs. Appl. 20–3, 413–445 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Achdou, Y., Salomé, Y., Tchou, N.: Hamilton–Jacobi equations for optimal control on junctions and networks. ESAIM: Control Optim. Calc. Var. 21–3, 876–899 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Barles, G.: An introduction to the theory of viscosity solutions for first-order Hamilton Jacobi equations and applications. In: Hamilton–Jacobi Equations: Approximations, Numerical Analysis and Applications, pp. 49–109. Springer, New York (2013)CrossRefGoogle Scholar
  6. 6.
    Barles, G., Chasseigne, E.: An Illustrated Guide of the Modern Approaches of Hamilton Jacobi Equations and Control Problems with Discontinuities. arXiv preprint (2018): arXiv:1812.09197
  7. 7.
    Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully non-linear second order equations. Asymp. Anal. 4–3, 271–283 (1991)zbMATHGoogle Scholar
  8. 8.
    Canarsa, P., Cardaliaguet, P.: Hölder estimates in space-time for viscosity solutions of Hamilton–Jacobi equations. Commun. Pure Appl. Math. 63–5, 590–629 (2010)zbMATHGoogle Scholar
  9. 9.
    Canarsa, P., Sinestrari, C.: Semiconcave Fuctnions, Hamilton-Jacobi Equations, and Optimal Control. Birkhauser, Basel (2004)CrossRefGoogle Scholar
  10. 10.
    Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27-1 (1992)Google Scholar
  11. 11.
    Crandall, M.G., Lions, P.-L.: Two approximations of solutions of Hamilton–Jacobi equations. Math. Comput. 43(167), 1 (1984)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  13. 13.
    Guerand, J., Koumaiha, M.: Error estimates for finite difference schemes associated with Hamilton–Jacobi equations on a junction. Numer. Math. 142–3, 525–575 (2019)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Imbert, C., Monneau, R.: Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks. Ann. Sci. Éc. Norm. Supér. 50–2, 357–448 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ishii, H.: Perron’s method for Hamilton–Jacobi equations. Duke J. Math. 55–2, 369–384 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jensen, R., Souganidis, P.E.: A regularity result for viscosity solutions of Hamilton–Jacobi equations in one space dimension. Trans. Am. Math. Soc. 301–1, 137–147 (1987)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society, Providence (1968)CrossRefGoogle Scholar
  18. 18.
    Lions, P.-L.: Neumann type boundary conditions for Hamilton–Jacobi equations. Duke J. Math. 52–3, 793–820 (1985)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lions, P.-L., Souganidis, P.E.: Viscosity solutions for junctions: well posedness and stability. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27–4, 535–546 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lions, P.-L., Souganidis, P.E.: Well posedness for multi-dimensional junction problems with Kirchoff-type conditions. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28–4, 807–816 (2018)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Rouy, E.: Numerical approximation of viscosity solutions of first-order Hamilton–Jacobi equations with Neumann type boundary conditions. Math. Models Methods Appl. Sci. 2–3, 357–374 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    von Below, J.: Classical solvability of linear parabolic equations on networks. J. Differ. Equ. 73, 316–337 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations