Profile decomposition in Sobolev spaces of non-compact manifolds

  • Kunnath Sandeep
  • Cyril TintarevEmail author


For many known non-compact embeddings of two Banach spaces \(E\hookrightarrow F\), every bounded sequence in E has a subsequence that takes form of a profile decomposition—a sum of clearly structured terms with asymptotically disjoint supports plus a remainder that vanishes in the norm of F. In this paper we construct a profile decomposition for arbitrary sequences in the Sobolev space \(H^{1,2}(M)\) of a Riemannian manifold with bounded geometry, relative to the embedding of \(H^{1,2}(M)\) into \(L^{2^*}(M)\), generalizing the well-known profile decomposition of Struwe (Math Z 187:511–517, 1984, Proposition 2.1) to the case of general bounded sequence and a non-compact manifold.


Concentration compactness Profile decompositions Multiscale analysis 

Mathematics Subject Classification

46E35 46B50 58J99 35B44 35A25 



  1. 1.
    Adimurthi, Tintarev, C.: On compactness in the Trudinger–Moser inequality. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5) 13, 1–18 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Adimurthi, Tintarev, C.: Defect of compactness in spaces of bounded variation. J. Func. Anal. 271, 37–48 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Croke, C.B.: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. Ecole. Norm. Sup. (4) 13, 419–435 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Devillanova, G., Tintarev, C.: A profile decomposition for the limiting Sobolev embedding. In: Fifteenth International Conference Zaragoza-Pau on Mathematics and its Applications Jaca, 10–12 September 2018 (in press). ArXiv: 1812.04248
  5. 5.
    Druet, O., Hebey, E., Robert, F.: Blow-Up Theory for Elliptic PDEs in Riemannian Geometry. Princeton University Press, Princeton (2004)zbMATHGoogle Scholar
  6. 6.
    Eichhorn, J.: The boundedness of connection coefficients and their derivatives. Math. Nachr. 152, 144–158 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gallier, J., Xu, D., Siqueira, M.: Parametric pseudo-manifolds. Differ. Geom. Appl. 30, 702–736 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gérard, P.: Description de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var. 3, 213–233 (1988)CrossRefGoogle Scholar
  9. 9.
    Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes, vol. 5, Courant Institute of mathematical Sciences and American Mathematical Society (1999)Google Scholar
  10. 10.
    Jaffard, S.: Analysis of the lack of compactness in the critical Sobolev embeddings. J. Func. Anal. 161, 384–396 (1999)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lieb, E.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Skrzypczak, L., Tintarev, C.: Defect of compactness for Sobolev spaces on manifolds with bounded geometry, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 5 (to appear). arXiv:1804.07950
  13. 13.
    Shubin, M. A.: Spectral Theory of Elliptic Operators on Noncompact Manifolds, Méthodes Semi-classiques, vol. 1 (Nantes, 1991), Astérisque 207, 35–108 (1992)Google Scholar
  14. 14.
    Skrzypczak, L., Tintarev, C.: Defect of compactness for Sobolev spaces on manifolds with bounded geometry, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 5 (to appear)Google Scholar
  15. 15.
    Solimini, S.: A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space. Ann. Inst. H. Poincaré Anal. Non Linéaire 12, 319–337 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Solimini, S., Tintarev, C.: Analysis of concentration in the Banach space. Commun. Contemp. Math. 18, 1550038 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tintarev, K., Fieseler, K.-H.: Concentration Compactness: Functional-Analytic Grounds and Applications. Imperial College Press, London (2007)CrossRefGoogle Scholar
  19. 19.
    Varopoulos, N.: Small time Gaussian estimates of heat diffusion kernels. I. The semigroup technique. Bull. Sci. Math. (2) 106, 253–277 (1989)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.TIFR Centre for Applicable MathematicsBangaloreIndia
  2. 2.UppsalaSweden

Personalised recommendations