Symmetry-breaking bifurcation for the Moore–Nehari differential equation

  • Ryuji Kajikiya
  • Inbo SimEmail author
  • Satoshi Tanaka


We study the bifurcation problem of positive solutions for the Moore-Nehari differential equation, \(u''+h(x,\lambda )u^p=0\), \(u>0\) in \((-1,1)\) with \(u(-1)=u(1)=0\), where \(p>1\), \(h(x,\lambda )=0\) for \(|x|<\lambda \) and \(h(x,\lambda )=1\) for \(\lambda \le |x| \le 1\) and \(\lambda \in (0,1)\) is a bifurcation parameter. We shall show that the problem has a unique even positive solution \(U(x,\lambda )\) for each \(\lambda \in (0,1)\). We shall prove that there exists a unique \(\lambda _*\in (0,1)\) such that a non-even positive solution bifurcates at \(\lambda _*\) from the curve \((\lambda , U(x,\lambda ))\), where \(\lambda _*\) is explicitly represented as a function of p.


Bifurcation Positive solution Symmetry-breaking Morse index 

Mathematics Subject Classification

34B09 34B18 34C23 34L30 



  1. 1.
    Amadori, A.L., Gladiali, F.: Bifurcation and symmetry breaking for the Henon equation. Adv. Differ. Equ. 19, 755–782 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations (Universitext). Springer, New York (2011)zbMATHGoogle Scholar
  3. 3.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience, New York (1989)zbMATHGoogle Scholar
  4. 4.
    Drábek, P., Manásevich, R.: On the closed solution to some nonhomogeneous eigenvalue problems with \(p\)-Laplacian. Differ. Integral Equ. 12, 773–788 (1999)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Gritsans, A., Sadyrbaev, F.: Extension of the example by Moore–Nehari. Tatra Mt. Math. Publ. 63, 115–127 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Kajikiya, R.: Non-even least energy solutions of the Emden–Fowler equation. Proc. Am. Math. Soc. 140, 1353–1362 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kajikiya, R.: Non-radial least energy solutions of the generalized Hénon equation. J. Differ. Equ. 252, 1987–2003 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kajikiya, R.: Nonradial positive solutions of the \(p\)-Laplace Emden–Fowler equation with sign-changing weight. Math. Nachr. 289, 290–299 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Le, V.K., Schmitt, K.: Global Bifurcation in Variational Inequalities: Applications to obstacle and unilateral problems (Applied Mathematical Sciences). Springer, Berlin (1997)CrossRefGoogle Scholar
  10. 10.
    López-Gómez, J., Rabinowitz, P.H.: Nodal solutions for a class of degenerate boundary value problems. Adv. Nonlinear Stud. 15, 253–288 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    López-Gómez, J., Rabinowitz, P.H.: The effects of spatial heterogeneities on some multiplicity results. Discrete Contin. Dyn. Syst. 36, 941–952 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    López-Gómez, J., Rabinowitz, P.H.: Nodal solutions for a class of degenerate one dimensional BVP’s. Topol. Methods Nonlinear Anal. 49, 359–376 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    López-Gómez, J., Molina-Meyer, M., Rabinowitz, P.H.: Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete Contin. Dyn. Syst. Ser. B 22, 923–946 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Moore, R.A., Nehari, Z.: Nonoscillation theorems for a class of nonlinear differential equations. Trans. Am. Math. Soc. 93, 30–52 (1959)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rabinowitz, P.: Some aspects of nonlinear eigenvalue problems. Rocky Mt. J. Math. 3, 161–202 (1973)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Schmitt, K., Thompson, R.: Nonlinear Analysis and Differential Equations: An introduction. University of Utah Lecture Note, Salt Lake City (2004)Google Scholar
  17. 17.
    Sim, I., Tanaka, S.: Symmetry-breaking bifurcation for the one-dimensional Hénon equation. Commun. Contemp. Math. (to appear)Google Scholar
  18. 18.
    Smets, D., Willem, M., Su, J.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4, 467–480 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Takeuchi, S.: Generalized Jacobian elliptic functions and their application to bifurcation problems associated with \(p\)-Laplacian. J. Math. Anal. Appl. 385, 24–35 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Takeuchi, S.: The basis property of generalized Jacobian elliptic functions. Commun. Pure Appl. Anal. 13, 2675–2692 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Takeuchi, S.: Multiple-angle formulas of generalized trigonometric functions with two parameters. J. Math. Anal. Appl. 444, 1000–1014 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tanaka, S.: Morse index and symmetry-breaking for positive solutions of one-dimensional Hénon type equations. J. Differ. Equ. 255, 1709–1733 (2013)CrossRefGoogle Scholar
  23. 23.
    Whyburn, G.T.: Topological Analysis, revised edn. Princeton University Press, Princeton (1964)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science and EngineeringSaga UniversitySagaJapan
  2. 2.Department of MathematicsUniversity of UlsanUlsanRepublic of Korea
  3. 3.Department of Applied Mathematics, Faculty of ScienceOkayama University of ScienceOkayamaJapan

Personalised recommendations