Weighted variable exponent Sobolev estimates for elliptic equations with non-standard growth and measure data

  • The Anh Bui
  • Xuan Thinh Duong


Consider the following nonlinear elliptic equation of p(x)-Laplacian type with nonstandard growth
$$\begin{aligned} {\left\{ \begin{array}{ll} \mathrm{div}a(Du, x)=\mu &{}\quad \text {in} \quad \Omega ,\\ u=0 &{} \quad \text {on} \quad \partial \Omega , \end{array}\right. } \end{aligned}$$
where \(\Omega \) is a Reifenberg domain in \(\mathbb {R}^n\), \(\mu \) is a Radon measure defined on \(\Omega \) with finite total mass and the nonlinearity \(a: \mathbb {R}^n\times \mathbb {R}^n\rightarrow \mathbb {R}^n\) is modeled upon the \(p(\cdot )\)-Laplacian. We prove the estimates on weighted variable exponent Lebesgue spaces for gradients of solutions to this equation in terms of Muckenhoupt–Wheeden type estimates. As a consequence, we obtain some new results such as the weighted \(L^q-L^r\) regularity (with constants \(q < r\)) and estimates on Morrey spaces for gradients of the solutions to this non-linear equation.


Nonlinear p(x)-Laplacian type equation Measure data Reifenberg domain Weighted generalized Lebesgue spaces 

Mathematics Subject Classification

35B65 35J60 35J99 


  1. 1.
    Almeida, A., Harjulehto, P., Hästö, P., Lukkari, T.: Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces. Ann. Mat. Pura Appl. (4) 194(2), 405–424 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Acerbi, E., Mingione, G.: Gradient estimates for the \(p(x)\)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baroni, P., Habermann, J.: Elliptic interpolation estimates for non-standard growth operators. Ann. Acad. Sci. Fenn. Math. 39(1), 119–162 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J.L.: An \(L^1\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 22, 241–273 (1995)MATHGoogle Scholar
  6. 6.
    Bendahmane, M., Wittbold, P., Zimmermann, A.: Renormalized solutions for a nonlinear parabolic equation with variable exponents and \(L^1\)-data. J. Differ. Equ. 249(6), 1483–1515 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Bögelein, V., Habermann, J.: Gradient estimates via non standard potentials and continuity. Ann. Acad. Sci. Fenn. Math. 35, 641–678 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Boccardo, L., Gallouët, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right-hand side measures. Commun. Partial Differ. Equ. 17(34), 641–655 (1992)MathSciNetMATHGoogle Scholar
  10. 10.
    Boccardo, L., Gallouët, T., Orsina, L.: Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 539–551 (1996)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bui, T.A., Duong, X.T., Le, X.T.: Regularity estimates for higher order elliptic systems on Reifenberg flat domains. J. Differ. Equ. 261(10), 5637–5669 (2016)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Byun, S.-S., Wang, L.: Elliptic equations with BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57(10), 1283–1310 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Byun, S.-S., Ok, J., Ryu, S.: Global gradient estimates for elliptic equations of \(p(x)\)-Laplacian type with BMO nonlinearity. J. Reine Angew. Math. 715, 1–38 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Byun, S.-S., Ok, J.: On \(W^{1,q(\cdot )}\)-estimates for elliptic equations of \(p(x)\)-Laplacian type. J. Math. Pures Appl. (9) 106(3), 512–545 (2016)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Caffarelli, L.A., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51, 1–21 (1998)CrossRefMATHGoogle Scholar
  16. 16.
    Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable \(L^p\) spaces. Rev. Mat. Iberoam. 23(3), 743–770 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (2013)CrossRefMATHGoogle Scholar
  19. 19.
    David, G., Toro, T.: A generalization of Reifenbergs theorem in \(\mathbb{R}^3\). Geom. Funct. Anal. 18(4), 1168–1235 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Diening, L., Ružička, M.: Calderón-Zygmund operators on generalized Lebesgue spaces \(L^{p(\cdot )}\) and problems related to fluid dynamics. J. Reine Angew. Math. 563, 197220 (2003)MATHGoogle Scholar
  21. 21.
    Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)CrossRefMATHGoogle Scholar
  22. 22.
    Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Math. Soc, Providence (2000)Google Scholar
  23. 23.
    Duzaar, F., Mingione, G.: Gradient estimates via non-linear potentials. Am. J. Math. 133, 1093–1149 (2011)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Duzaar, F., Mingione, G.: Gradient estimates via linear and nonlinear potentials. J. Funct. Anal. 259(11), 2961–2998 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Duzaar, F., Mingione, G.: Gradient continuity estimates. Calc. Var. Partial Differ. Equ. 39(3–4), 379–418 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co., Inc., River Edge (2003)CrossRefMATHGoogle Scholar
  27. 27.
    Harjulehto, P., Kuusi, T., Lukkari, T., Marola, N., Parviainen, M.: Harnacks inequality for quasiminimizers with non-standard growth conditions. J. Math. Anal. Appl. 344(1), 504–520 (2008)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kilpeläinen, T., Malý, J.: Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 19, 591–613 (1992)MathSciNetMATHGoogle Scholar
  29. 29.
    Kilpeläinen, T., Malý, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172, 137–161 (1994)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kuusi, T., Mingione, G.: Linear potentials in nonlinear potential theory. Arch. Ration. Mech. Anal. 207(1), 215–246 (2013)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Kuusi, T., Mingione, G.: Universal potential estimates. J. Funct. Anal. 262(10), 4205–4269 (2012)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzenskaja and Uraltzeva for elliptic equations. Commun. Partial Differ. Equ. 16, 311–361 (1991)CrossRefMATHGoogle Scholar
  33. 33.
    Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Mingione, G.: Gradient potential estimates. J. Eur. Math. Soc.: JEMS 13(2), 459–486 (2011)MathSciNetMATHGoogle Scholar
  35. 35.
    Mengesha, T., Phuc, N.C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203(1), 189–216 (2012)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Mengesha, T., Phuc, N.C.: Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains. J. Differ. Equ. 250, 2485–2507 (2011)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Nguyen, Q.-H.: Potential estimates and quasilinear parabolic equations with measure data. arxiv:1405.2587
  38. 38.
    Phuc, N.C.: Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations. Adv. Math. 250, 387–419 (2014)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Rajagopal, K., Ružička, M.: Mathematical modelling of electro-rheological fluids. Contin. Mech. Thermodyn. 13, 59–78 (2001)CrossRefMATHGoogle Scholar
  40. 40.
    Reifenberg, E.: Solutions of the plateau problem for \(m\)-dimensional surfaces of varying topological type. Acta Math. 104, 1–92 (1960)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)MATHGoogle Scholar
  42. 42.
    Sanchón, M., Urbano, J.M.: Entropy solutions for the \(p(x)\)-Laplace equation. Trans. Am. Math. Soc. 361(12), 6387–6405 (2009)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Toro, T.: Doubling and flatness: geometry of measures. Not. Am. Math. Soc. 44, 1087–1094 (1997)MathSciNetMATHGoogle Scholar
  44. 44.
    Trudinger, N.S., Wang, J.X.: On the weak continuity of elliptic operators and applications to potential theory. Am. J. Math. 124, 369–410 (2002)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Zhang, X., Fu, Y.: Solutions for nonlinear elliptic equations with variable growth and degenerate coercivity. Ann. Mat. Pura Appl. (4) 193(1), 133–161 (2014)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Zhang, C., Zhou, S.: Global weighted estimates for quasilinear elliptic equations with non-standard growth. J. Funct. Anal. 267(2), 605–642 (2014)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 50(4), 675–710 (1986)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsMacquarie UniversitySydneyAustralia

Personalised recommendations