On abstract indefinite concave–convex problems and applications to quasilinear elliptic equations



In this work we study the existence of critical points of an abstract \(C^1\) functional J defined in a reflexive Banach space X. This functional is of the form
$$\begin{aligned} J(u)=\dfrac{1}{p}E(u)-\dfrac{1}{r}A(u)-\dfrac{1}{q}B(u), \end{aligned}$$
with EAB positive-homogeneous indefinite functional of degree pqr respectively and \(1<p<q<r\). The critical points are found by minimization along several subsets of the Nehari manifold associated to J. We apply these results to various quasilinear elliptic problems, as for instance, the following p-laplacian concave–convex problem with Steklov boundary conditions on a bounded regular domain
$$\begin{aligned} \left\{ \begin{array}{lllll} -\Delta _p u+V(x)u^{p-1} =0&{} \text { in } \Omega ;\\ |\nabla u|^{p-2}\dfrac{\partial u}{\partial \nu }=\lambda a(x)u^{r-1} +b(x)u^{q-1}&{}\text { on }\partial \Omega ; \\ u>0 \text { in }\Omega , \end{array} \right. \end{aligned}$$
with given functions abV possibly indefinite and \(1<r<p<q\). We also apply our abstract result for a concave–convex quasilinear problem associated to the p-bilaplacian.


Concave–convex problem Nehari manifold Dirichlet–Steklov boundary condition Elliptic problem Non-coerciveness p-Laplacian p-bilaplacian Indefinite weights 

Mathematics Subject Classification

35J20 35J70 35P05 35P30 



This work was partilly carried out while the first author was visiting the IMSP of the Université d’Abomey Calavi (Porto-Novo) and also while the second author was visiting the Université du Littoral Côte d’Opale (ULCO) and the Université Libre de Bruxelles (ULB). We would like to express our gratitude to those institutions.


  1. 1.
    Ambrosetti, A., Brézis, H., Cerami, G.: Combined effect of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)Google Scholar
  2. 2.
    Ambrosetti, A., Garcia-Azorero, J., Peral, I.: Multiplicity results for some nonlinear elliptic equations. J. Funct. Anal. 137(1), 219–242 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brown, K.J.: The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc. Var. Partial Differ. Equ. 22(4), 483–494 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brown, K.J., Wu, T.-F.: A fibering map approach to a semilinear elliptic boundary value problem. Electron. J. Differ. Equ. 2007(69), 1–9 (2007)MathSciNetGoogle Scholar
  5. 5.
    Brown, K.J., Zhang, Y.: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Differ. Equ. 193(2), 481–499 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cuesta, M., Leadi, L.: Weighted eigenvalue problems for quasilinear elliptic operators with mixed Robin–Dirichlet boundary conditions. J. Math. Anal. Appl. 422, 1–26 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cuesta, M., Quoirin, H.R.: A weighted eigenvalue problem for the p-Laplacian plus a potential. Nonlinear Differ. Equ. Appl. 16(4), 469–491 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    De Figueiredo, D.G., Gossez, J.P., Ubilla, P.: Local superlinearity and sublinearity for the p-Laplacian. J. Funct. Anal. 257(3), 721–752 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Drabek, P., Otani, M.: Global bifurcation result for the p-biharmonic operator. Electron. J. Differ. Equ. 2001(48), 1–19 (2001)MathSciNetMATHGoogle Scholar
  10. 10.
    Garcia-Azorero, J., Peral, I., Rossi, J.D.: A convex–concave problem with a nonlinear boundary condition. J. Differ. Equ. 198(1), 91–128 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Garcia-Azorero, J., Peral, I.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 323(2), 877–895 (1991)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Garcia-Azorero, J., Peral, I.: Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana Univ. Math. J. 43(3), 941–957 (1994)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ji, C., Wang, W.: On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function. Electron. J. Qual. Theory Differ. Equ. 2, 1–17 (2012)MathSciNetMATHGoogle Scholar
  14. 14.
    Lieberman, G.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. TMA 12(11), 1203–1219 (1988)Google Scholar
  15. 15.
    Liu, L., Chen, C.: Infinitely many solutions for p-biharmonic equation with general potential and concave–convex nonlinearity in \({\mathbb{R}}^{N}\). Bound. Value Probl. 2016, 1–9 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ramos-Quoirin, H.: Lack of coercivity in a concave–convex type equation. Calc. Var. 37, 523–546 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sabina de Lis, J.C.: A concave–convex quasilinear elliptic problem subject to a non linear boundary condition. Differ. Equ. Appl. 3(4), 469–486 (2011)MathSciNetMATHGoogle Scholar
  18. 18.
    Struwe, M.: Variational Methods, Applications to NonlinearPartial Differential Equations and Hamiltonian Systems. Springer, Berlin (1998)Google Scholar
  19. 19.
    Talbi, M., Tsouli, N.: On the spectrum of the weighted p-Biharmonic operator with weight. Mediterr. J. Math. 4, 73–86 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Vazquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wu, T.F.: Multiplicity of positive solution of p-Laplacian problems with sign-changing weight functions. Int. J. Math. Anal. (Ruse) 1(912), 557–563 (2007)MathSciNetMATHGoogle Scholar
  22. 22.
    Yang, L., Wang, X.: On semilinear biharmonic equations with concave–convex nonlinearities involving weight functions. Bound. Value Probl. 2014(117), 1–15 (2014)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.LMPA Joseph Liouville, FR CNRS Math. 2956Université Lille Nord de FranceCalaisFrance
  2. 2.Département de Mathématiques, Faculté des Sciences et Techniques Institut de Mathématiques et de Sciences PhysiquesUniversité d’Abomey-CalaviPorto-NovoBenin

Personalised recommendations