Advertisement

On the lower semicontinuity and approximation of \({L^{\infty}}\)-functionals

  • Francesca PrinariEmail author
Article
  • 71 Downloads

Abstract

In this paper we show that if the supremal functional
$$F(V,B)= \mathop{\rm ess sup} \limits_{x \in B} f(x,DV (x))$$
is sequentially weak* lower semicontinuous on \({W^{1,\infty}(B, \mathbb{R}^d)}\) for every open set \({B \subseteq \Omega}\) (where \({\Omega}\) is a fixed open set of \({\mathbb{R}^N}\)), then \({f(x,\cdot)}\) is rank-one level convex for a.e \({x \in \Omega}\). Next, we provide an example of a weak Morrey quasiconvex function which is not strong Morrey quasiconvex. Finally we discuss the L p -approximation of a supremal functional F via \({\Gamma}\)-convergence when f is a non-negative and coercive Carathéodory function.

Keywords

Supremal functionals Lower semicontinuity Strong Morrey quasiconvexity \({\Gamma}\)-convergence 

Mathematics Subject Classification

49J45 49A50 

References

  1. 1.
    Ansini N., Prinari F.: Power law approximation of supremal functional under differential constraint. SIAM J. Math. Anal. 2(46), 1085–111 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ansini, N., Prinari. F.: Lower semicontinuity of supremal functional under differential constraint (to appear on ESAIM Control Optim. Calc. Var.)Google Scholar
  3. 3.
    Acerbi E., Buttazzo G., Prinari F.: The class of functionals which can be represented by a supremum. J. Convex Anal. 9, 225–236 (2002)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Acerbi E., Fusco N.: Semicontinuity Problems in the Calculus of Variations. Arch. Rational Mech. Anal. 86, 125–145 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Aronsson G.: Extension of Functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561 (1967)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Barron E.N., Jensen R.R.: Relaxed minimal control. SIAM J. Control Optim. 33(4), 1028–1039 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Barron E.N., Jensen R.R., Wang C.Y.: The Euler Equation and Absolute Minimizers of \({L^{\infty}}\) Functionals. Arch. Ration. Mech. Anal. 157(4), 225–283 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Barron E.N., Jensen R.R., Wang C.Y.: Lower semicontinuity of \({L^\infty}\) functionals. Ann. Inst. H. Poincaré Anal. Non Lineaire 4, 495–517 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Barron E.N., Liu W.: Calculus of Variation in \({L^{\infty}}\). Appl. Math. Optim. 35(3), 237–263 (1997)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Bocea M., Nesi V.: \({\Gamma}\)-convergence of power-law functionals, variational principles in \({L^{\infty}}\) and applications. SIAM J. Math. Anal. 39, 1550–1576 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Braides A., Defranceschi A.: Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
  12. 12.
    Champion T., De Pascale L., Prinari F.: \({\Gamma}\)-convergence and absolute minimizers for supremal functionals. ESAIM Control Optim. Calc. Var. 10, 14–27 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Champion T., De Pascale L., Jimenez C.: The \({\infty}\)-eigenvalue problem and a problem of a optimal transportation. Commun. Appl. Anal. 13(4), 547–565 (2009)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Springer, New York (2008)Google Scholar
  15. 15.
    Dal Maso, G.: An Introduction to \({\Gamma}\)-convergence. Birkhäuser, Boston (1993)Google Scholar
  16. 16.
    Fonseca I., Müller S.: \({\mathcal{A}}\)-Quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30, 1355–1390 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Garroni A., Nesi V., Ponsiglione M.: Dielectric breakdown: optimal bounds. Proc. Roy. Soc. London A 457, 2317–2335 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Garroni A., Ponsiglione M., Prinari F.: From 1-homogeneous supremal functionals to difference quotients: relaxation and \({\Gamma}\)-convergence. Calc. Var. 27(4), 397–420 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Gori M., Maggi F.: On the lower semicontinuity of supremal functionals. ESAIM Control Optim. Calc. Var. 9, 135–143 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    McShane E.J.: Extension of range of functions. Bull. Amer. Math. Soc. 40(2), 837–843 (1934)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pedregal P.: Optimization, relaxation and Young measures. Bull. Amer. Math. Soc. 36(1), 27–58 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Prinari F.: Semicontinuity and supremal representation in the Calculus of Variations. Appl. Math. Optim. 54, 111–145 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Prinari F.: Semicontinuity and relaxation of \({L^{\infty}}\)-functionals. Adv. Calc. Var. 2(1), 43–71 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Ribeiro, A., Zappale, E.: Existence of minimizers for non-level convex supremal functionals. SIAM J. Control Optim.Google Scholar
  25. 25.
    Sverak V.: Rank one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A 120, 185–189 (1992)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Dip. di Matematica e InformaticaUniversità di FerraraFerraraItaly

Personalised recommendations