Advertisement

Existence and multiple solutions for a critical quasilinear equation with singular potentials

  • Shaowei Chen
  • Zhi-Qiang WangEmail author
Article

Abstract

We study the following quasilinear elliptic equations
$$-\Delta_p u + V(x)|u|^{p-2}u = K( x)|u|^{q-2}u \,\,{\rm in}\,\, \mathbb{R}^N$$
where 1 < p < N and \({q = p(N - ps/b)/(N - p)}\) with constants b and s such that b < p, b ≠  0, \({ 0 < \frac{s}{b} < 1}\). This exponent q behaves like a critical exponent due to the presence of the potentials even though \({p < q < p^*= \frac{pN}{N-p}}\) the Sobolev critical exponent. The potential functions V and K are locally bounded functions and satisfy that there exist positive constants L, C 1, C 2, D 1 and D 2 such that \({C_1 \leq |x|^{b}V(x) \leq C_2}\) and \({D_1 \leq |x|^{s}K(x) \leq D_2}\) for \({|x| \geq L}\). We prove that below some energy threshold, the Palais–Smale condition holds for the functional corresponding to this equation. And we show that the finite energy solutions of this equation have exponential decay like \({e^{-\gamma|x|^{1-b/p}}}\) at infinity. If V has a critical frequency, i.e., V −1(0) has a non-empty interior, we prove that
$$-\Delta_p u + \lambda V(x)|u|^{p-2}u = K(x)|u|^{q-2}u\,\, {\rm in}\,\, \mathbb{R}^N$$
has more and more solutions as \({\lambda\rightarrow+\infty.}\)

Mathematics Subject Classification

35J20 35J60 

Keywords

Quasilinear elliptic equation Critical exponent Decaying or coercive potentials Exponential decay 

References

  1. 1.
    Adams, R., Fournier, J.F.: Sobolev Spaces, 2nd ed. In: Pure and Applied Mathematics (Amsterdam), vol. 140. Elsevier/Academic Press, Amsterdam (2003)Google Scholar
  2. 2.
    Alves C.O.: Existence of multi-bump solutions for a class of quasilinear problems. Adv Nonlinear Stud. 6, 491–509 (2006)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alves C.O., Souto M.S.: Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity. J. Differ. Equ. 254, 1977–1991 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ambrosetti A., Wang Z.-Q.: Nonlinear Schrödinger equations with vanishing and decaying potentials. Differ. Integral Equ. 18, 1321–1332 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ambrosetti A., Felli V., Malchiodi A.: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J Eur. Math. Soc. 7, 117–144 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, New York (1974)Google Scholar
  7. 7.
    Bartsch T., Wang Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R}^N}\). Comm Partial Differ. Equ. 20, 1725–1741 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bartsch T., Pankov A., Wang Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bonheure D., Van Schaftingen J.: Groundstates for the nonlinear Schrödinger equation with potential vanishing at infinity. Ann. Mat. Pura Appl. 189(4), 273–301 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Byeon J., Wang Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, S.: Existence of positive solutions for a critical nonlinear Schrödinger equation with vanishing or coercive potentials. Bound. Value Probl. 2013, 201 2013Google Scholar
  12. 12.
    Costa D.G.: On a class of elliptic systems in \({\mathbb{R}^N}\). Electron. J. Differ. Equ. 7, 1–14 (1994)Google Scholar
  13. 13.
    Felmer P., Mayorga-Zambrano J.: Multiplicity and concentration for the nonlinear Schrödinger equation with critical frequency. Nonlinear Anal. 66, 151–169 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. In: Classics in Mathematics. Springer, Berlin (2001)Google Scholar
  15. 15.
    Lyberopoulos A.N.: Quasilinear scalar field equations with competing potentials. J Differ. Equ. 251, 3625–3657 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lyberopoulos A.N.: Bound states for a class of quasilinear scalar field equations with potentials vanishing at infinity. Acta Math. Sci. Ser. B Engl. Ed. 32, 197–208 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Opic, B., Kufner, A.: Hardy-type inequalities, Pitman Res. Notes in Mathematical Series, vol. 219. Longman Scientific Technical, Harlow (1990)Google Scholar
  18. 18.
    Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence (1986)Google Scholar
  19. 19.
    Simon, J.: Régularité de la Solution d’une Équation non Linéaire Dans \({\mathbb{R}^N}\) In: Lectures Notes in Mathematics, vol. 665, pp. 205–227. Springer, Berln (1978)Google Scholar
  20. 20.
    Sintzoff P.: Symmetry of solutions of a semilinear elliptic equation with unbounded coefficients. Differ. Integral Equ. 16, 769–786 (2003)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Sintzoff, P., Willem, M.: A semilinear elliptic equation on \({\mathbb{R}^N}\) with unbounded coefficients in: variational and toplogical methods in the study of nonlinear phenomena. In: Progress in Nonlinear Differential Equations and their Applications, vol. 49. Birkhäuser Boston, Inc., Boston (2002)Google Scholar
  22. 22.
    Sirakov B.: Existence and multiplicity of solutions of semi-linear elliptic equations in \({\mathbb{R}^N}\). Calc. Var. Partial Differ. Equ. 11, 119–142 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Souplet P., Zhang Q.S.: Stability for semilinear parabolic equations with decaying potentials in \({\mathbb{R}^N}\) and dynamical approach to the existence of ground states. Ann. Inst. H. Poincaré Anal. Non Linéaire. 19, 683–703 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Su J., Wang Z.-Q.: Sobolev type embedding and quasilinear elliptic equations with radial potentials. J. Differ. Equ. 250, 223–242 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Su J., Wang Z.-Q., Willem M.: Nonlinear Schrödinger equations with unbounded and decaying radial potentials. Commun. Contemp. Math. 9, 571–583 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Su J., Wang Z.-Q., Willem M.: Weighted Sobolev embedding with unbounded and decaying radial potentials. J. Differ. Equ. 238, 201–219 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Willem, M.: Minimax theorems. In: Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston, Inc., Boston, MA (1996)Google Scholar
  29. 29.
    Zhang, G.: Weighted Sobolev spaces and ground state solutions for quasilinear elliptic problems with unbounded and decaying potentials, Bound. Value Probl. 2013, 189 (2013)Google Scholar
  30. 30.
    Zhang Q.S.: Positive solutions to \({\Delta u - Vu + Wu^p = 0}\) and its parabolic counterpart in noncompact manifolds. Pacific J. Math. 213, 163–200 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.School of Mathematical SciencesHuaqiao UniversityQuanzhouPeople’s Republic of China
  2. 2.Center for Applied MathematicsTianjin UniversityTianjinPeople’s Republic of China
  3. 3.Department of Mathematics and StatisticsUtah State UniversityLoganUSA

Personalised recommendations