Uniqueness and non-degeneracy for a nuclear nonlinear Schrödinger equation

Article

Abstract

We prove the uniqueness and non-degeneracy of positive solutions to a cubic nonlinear Schrödinger (NLS) type equation that describes nucleons. The main difficulty stems from the fact that the mass depends on the solution itself. As an application, we construct solutions to the \({\sigma}\)\({\omega}\) model, which consists of one Dirac equation coupled to two Klein–Gordon equations (one focusing and one defocusing).

Mathematics Subject Classification

35Q40 81V35 35A02 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berestycki H., Lions P., Peletier L.: An ODE approach to the existence of positive solutions for semilinear problems in \({\mathbb{R}^n}\). Indiana Univ. Math. J. 30, 141–157 (1981)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brothers J.E., Ziemer W.P.: Minimal rearrangements of Sobolev functions. Journal für die reine und angewandte Mathematik 384, 153–179 (1988)MathSciNetMATHGoogle Scholar
  3. 3.
    Coffman C.V.: Uniqueness of the ground state solution for \({\Delta u-u+u^{3}=0}\) and a variational characterization of other solutions. Arch. Rational Mech. Anal 46, 81–95 (1972)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Esteban, M.J., Rota Nodari, S.: Symmetric ground states for a stationary relativistic mean-field model for nucleons in the nonrelativistic limit. Rev. Math. Phys. 24, 1250025–1250055 (2012)Google Scholar
  5. 5.
    Esteban M.J., Rota Nodari S.: Ground states for a stationary mean-field model for a nucleon. Ann. Henri Poincaré 14, 1287–1303 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)Google Scholar
  7. 7.
    Ferone A., Volpicelli R.: Minimal rearrangements of Sobolev functions: a new proof. Annales de l’institut Henri Poincaré (C) Analyse non linéaire 20, 333–339 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Frank, R.L.: Ground states of semi-linear pde. In: Lecture notes from the “Summerschool on Current Topics in Mathematical Physics”. CIRM Marseille, Sept. 2013 (2013)Google Scholar
  9. 9.
    Gidas, B., Ni, W.M., Nirenberg L.: Symmetry of positive solutions of nonlinear elliptic equations in R n. In: Mathematical Analysis and Applications, Part A, vol. 7. Advances in Mathematics Supplementary Studies. Academic Press, New York, pp. 369–402 (1981)Google Scholar
  10. 10.
    Krantz, S., Parks, H.: The Implicit Function Theorem: History, Theory, and Applications, Modern Birkhäuser Classics. Springer, Berlin (2012)Google Scholar
  11. 11.
    Kwong, M.K.: Uniqueness of positive solutions of \({\Delta u-u+u^p=0}\) in R n. Arch. Rational Mech. Anal. 105, 243–266 (1989)Google Scholar
  12. 12.
    Kwong M.K., Zhang L.Q.: Uniqueness of the positive solution of \({\Delta u+f(u)=0}\) in an annulus. Differ. Integral Equ. 4, 583–599 (1991)MathSciNetMATHGoogle Scholar
  13. 13.
    Le Treust L., Rota Nodari S.: Symmetric excited states for a mean-field model for a nucleon. J. Differ. Equ. 255, 3536–3563 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lenzmann, E.: Uniqueness of ground states for pseudo-relativistic Hartree equations. Anal PDE 2, 1–27 (2009)Google Scholar
  15. 15.
    Li Y., Ni W.-M.: Radial symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}^n}\). Comm. Part. Differ. Eq. 18, 1043–1054 (1993)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lieb, E.H., Loss, M.: Analysis. In: Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence, RI (2001)Google Scholar
  17. 17.
    Lions P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–149 (1984)MATHGoogle Scholar
  18. 18.
    Lions P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)MATHGoogle Scholar
  19. 19.
    McLeod K.: Uniqueness of positive radial solutions of \({\Delta u+f(u)=0}\) in R n. II. Trans Amer. Math. Soc. 339, 495–505 (1993)MathSciNetMATHGoogle Scholar
  20. 20.
    McLeod K., Serrin J.: Uniqueness of positive radial solutions of \({\Delta u+f(u)=0}\) in R n. Arch. Rational Mech. Anal. 99, 115–145 (1987)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Meng J., Toki H., Zhou S.G., Zhang S.Q., Long W.H., Geng L.S.: Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 57, 470–563 (2006)CrossRefGoogle Scholar
  22. 22.
    Morrey J.C.B.: On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. I. Analyticity in the interior. Am. J. Math 80, 198–218 (1958)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Peletier L.A., Serrin J.: Uniqueness of positive solutions of semilinear equations in R n. Arch. Rational Mech. Anal. 81, 181–197 (1983)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Reinhard P.G.: The relativistic mean-field description of nuclei and nuclear dynamics. Rep. Prog. Phys. 52, 439–514 (1989)CrossRefGoogle Scholar
  25. 25.
    Ring P.: Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys 37, 193–263 (1996)CrossRefGoogle Scholar
  26. 26.
    Serot, B.; Walecka, J.: The relativistic nuclear manybody problem. In: Advances in Nuclear Physics, vol. 16. Plenum, New York, p. 212 (1986)Google Scholar
  27. 27.
    Serrin J., Tang M.: Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ. Math. J. 49, 897–923 (2000)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Tao, T.: Nonlinear dispersive equations. In: CBMS Regional Conference Series in Mathematics, vol. 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysisGoogle Scholar
  29. 29.
    Thaller, B.: The Dirac equation. In: Texts and Monographs in Physics. Springer, Berlin (1992)Google Scholar
  30. 30.
    Walecka J.D.: A theory of highly condensed matter. Ann. Phys. 83(1974), 491–529 (1974)CrossRefGoogle Scholar
  31. 31.
    Walecka, J.D.: Theoretical Nuclear and Subnuclear Physics, 2nd edn. Imperial College Press and World Scientific Publishing Co. Pte. Ltd., Singapore (2004)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.CNRS and Laboratoire de Mathématiques (UMR 8088)Université de Cergy-PontoiseCergy-PontoiseFrance
  2. 2.Laboratoire Paul Painlevé (UMR 8524)Université Lille 1 Sciences et TechnologiesVilleneuve d’AscqFrance

Personalised recommendations