Minimal energy solutions for cooperative nonlinear Schrödinger systems

Article

Abstract

We prove sharp existence and nonexistence results for minimal energy solutions of the nonlinear Schrödinger system
$$\left.\begin{array}{ll}\quad -\Delta u + u = |u|^{2q-2}u + b|u|^{q-2}u|v|^q \quad {\rm in} \, \mathbb{R}^{n},\\ -\Delta v + \omega^2 v = |v|^{2q-2}v + b|u|^q|v|^{q-2}v \quad {\rm in} \, \mathbb{R}^{n}\end{array}\right.$$
(1)
in the cooperative and subcritical case \({b > 0, 1 < q < \frac{n}{(n-2)_+}}\) . The proofs are accomplished by minimizing the Euler functional of (1) over the two associated Nehari manifolds. In the special case \({1 < q < 2}\) we find that a positive solution of (1) with minimal energy among all nontrivial solutions exists if and only if b > 0.

Mathematics Subject Classification (2010)

Primary: 35J50 35J57 

Keywords

Variational methods for elliptic systems Nonlinear Schrödinger systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosetti A., Colorado E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 342(7), 453–458 (2006)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bartsch T., Dancer N., Wang Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37(3-4), 345–361 (2010)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Busca J., Sirakov B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163(1), 41–56 (2000)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chen, Z., Zou, W.: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. Partial Differ. Equ. 48(3–4), 695–711. doi:10.1007/s00526-012-0568-2
  5. 5.
    de Figueiredo D.G., Lopes O.: Solitary waves for some nonlinear Schrödinger systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(1), 149–161 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Hundertmark, D.: Some bound state problems in quantum mechanics. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Volume 76 of Proc. Sympos. Pure Math., pp. 463–496. American Mathematical Society, Providence(2007)Google Scholar
  7. 7.
    Ikoma N.: Uniqueness of positive solutions for a nonlinear elliptic system. NoDEA Nonlinear Differ. Equ. Appl. 16(5), 555–567 (2009)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Kwong M.K.: Uniqueness of positive solutions of \({\Delta u-u+u^p=0}\) in R n. Arch. Rational Mech. Anal. 105(3), 243–266 (1989)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Lin T.-C., Wei J.: Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}^n}\) , \({n \leq 3}\) . Commun. Math. Phys. 255(3), 629–653 (2005)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Lin, T.-C., Wei, J.: Erratum: “Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}^n}\) , \({n \leq 3}\) ” [Comm. Math. Phys. 255 (2005), no. 3, 629–653]. Commun. Math. Phys. 277(2):573–576 (2008)Google Scholar
  11. 11.
    Maia L.A., Montefusco E., Pellacci B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Mandel, R.: Grundzustände, Verzweigungen und singuläre Lösungen nichtlinearer Schrödingersysteme. PhD thesis, Karlsruhe Institute of Technology (KIT) (2013)Google Scholar
  13. 13.
    Mandel, R.: Minimal energy solutions for repulsive nonlinear schrödinger systems. J. Differ. Equ. 257(2), 450–468 (2014). doi:10.1016/j.jde.2014.04.006
  14. 14.
    Sirakov B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}^n}\) . Commun. Math. Phys. 271(1), 199–221 (2007)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Wei J., Weth T.: Nonradial symmetric bound states for a system of coupled Schrödinger equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18(3), 279–293 (2007)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations