Minimal energy solutions for cooperative nonlinear Schrödinger systems

  • Rainer MandelEmail author


We prove sharp existence and nonexistence results for minimal energy solutions of the nonlinear Schrödinger system
$$\left.\begin{array}{ll}\quad -\Delta u + u = |u|^{2q-2}u + b|u|^{q-2}u|v|^q \quad {\rm in} \, \mathbb{R}^{n},\\ -\Delta v + \omega^2 v = |v|^{2q-2}v + b|u|^q|v|^{q-2}v \quad {\rm in} \, \mathbb{R}^{n}\end{array}\right.$$
in the cooperative and subcritical case \({b > 0, 1 < q < \frac{n}{(n-2)_+}}\) . The proofs are accomplished by minimizing the Euler functional of (1) over the two associated Nehari manifolds. In the special case \({1 < q < 2}\) we find that a positive solution of (1) with minimal energy among all nontrivial solutions exists if and only if b > 0.

Mathematics Subject Classification (2010)

Primary: 35J50 35J57 


Variational methods for elliptic systems Nonlinear Schrödinger systems 


  1. 1.
    Ambrosetti A., Colorado E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 342(7), 453–458 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bartsch T., Dancer N., Wang Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37(3-4), 345–361 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Busca J., Sirakov B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163(1), 41–56 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chen, Z., Zou, W.: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. Partial Differ. Equ. 48(3–4), 695–711. doi: 10.1007/s00526-012-0568-2
  5. 5.
    de Figueiredo D.G., Lopes O.: Solitary waves for some nonlinear Schrödinger systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 25(1), 149–161 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Hundertmark, D.: Some bound state problems in quantum mechanics. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Volume 76 of Proc. Sympos. Pure Math., pp. 463–496. American Mathematical Society, Providence(2007)Google Scholar
  7. 7.
    Ikoma N.: Uniqueness of positive solutions for a nonlinear elliptic system. NoDEA Nonlinear Differ. Equ. Appl. 16(5), 555–567 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Kwong M.K.: Uniqueness of positive solutions of \({\Delta u-u+u^p=0}\) in R n. Arch. Rational Mech. Anal. 105(3), 243–266 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Lin T.-C., Wei J.: Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}^n}\) , \({n \leq 3}\) . Commun. Math. Phys. 255(3), 629–653 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lin, T.-C., Wei, J.: Erratum: “Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}^n}\) , \({n \leq 3}\) ” [Comm. Math. Phys. 255 (2005), no. 3, 629–653]. Commun. Math. Phys. 277(2):573–576 (2008)Google Scholar
  11. 11.
    Maia L.A., Montefusco E., Pellacci B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229(2), 743–767 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Mandel, R.: Grundzustände, Verzweigungen und singuläre Lösungen nichtlinearer Schrödingersysteme. PhD thesis, Karlsruhe Institute of Technology (KIT) (2013)Google Scholar
  13. 13.
    Mandel, R.: Minimal energy solutions for repulsive nonlinear schrödinger systems. J. Differ. Equ. 257(2), 450–468 (2014). doi: 10.1016/j.jde.2014.04.006
  14. 14.
    Sirakov B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}^n}\) . Commun. Math. Phys. 271(1), 199–221 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Wei J., Weth T.: Nonradial symmetric bound states for a system of coupled Schrödinger equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 18(3), 279–293 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Department of MathematicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations