Addendum to: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, NoDEA. Nonlinear Differential Equations Appl. 11 (2004), no. 3, 379-391, and a comment on the generalized Ambrosetti-Rabinowitz condition

Article

Abstract

We show the incompleteness of a usually used version of the generalized Ambrosetti–Rabinowitz condition in superlinear problems, also used in the paper cited in the title, and we propose a complete one.

Mathematics subject classification (2000)

35J20 35J61 

Keywords

Generalized Ambrosetti–Rabinowitz condition Superlinear equations 

References

  1. 1.
    Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Mugnai D.: Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue. ESAIM Control Optim. Calc. Var. 11(4), 508–521 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Mugnai D.: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem. NoDEA Nonlinear Differ. Equ. Appl. 11(3), 379–391 (2004)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di PerugiaPerugiaItaly

Personalised recommendations