Bound states to critical quasilinear Schrödinger equations

Article

Abstract

In this paper, we consider the critical quasilinear Schrödinger equations of the form
$$ -\varepsilon^2\Delta u+V(x)u-\varepsilon^2[\Delta(u^2)]u=|u|^{2(2^*)-2}u+g(u),\quad x\in \mathbb{R}^N, $$
where N ≥ 3, 2* := 2N/(N − 2) and g(u) is of subcritical growth. We prove the existence of positive bound states which concentrate around a local minimum point of V as ε → 0+.

Mathematics Subject Classification (2000)

35B33 35J20 35J60 35Q55 

References

  1. 1.
    Alves C.O., do Ó J.M., Souto M.A.S.: Local mountain-pass for a class of elliptic problem in \({\mathbb{R}^N}\) involving critical exponents. Nonlinear Analysis TMA 46, 495–510 (2001)MATHCrossRefGoogle Scholar
  2. 2.
    Ambrosetti A., Badiale M., Cingolani S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ambrosetti A., Malchiodi A., Secchi S.: Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159, 253–271 (2001)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Amberosetti A., Wang Z.Q.: Positive solutions to a class of quasilinear elliptic equations on \({\mathbb{R}}\). Discrete Contin. Dyn. Syst. 9, 55–68 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berestycki H., Lions P.L.: Nonlinear scalar field equations I. Arch. Ration. Mech. Anal. 82, 313–346 (1983)MathSciNetMATHGoogle Scholar
  6. 6.
    Brezis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bonheure D., Schaftingen J.V.: Bound state solutions for a class of nonlinear Schrödinger equations. Rev. Mat. Iberoamericana 24(1), 297–351 (2008)MATHCrossRefGoogle Scholar
  8. 8.
    Byeon J., Jeanjean L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185, 185–200 (2007)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Byeon J., Wang Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calc. Var. Partial Differ. Equ. 18, 207–219 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Colin M., Jeanjean L.: Solutions for a quasilinear Schrödinger equations: a dual approach. Nonlinear Anal. TMA 56, 213–226 (2004)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Dancer N., Lam K.Y., Yan S.: The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations. Abstr. Appl. Anal. 3, 293–318 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dancer N., Yan S.: On the existence of multipeak solutions for nonlinear field equations on \({\mathbb{R}^N}\). Discrete Contin. Dyn. Syst. 6, 39–50 (2000)MathSciNetMATHGoogle Scholar
  13. 13.
    Del Pino M., Felmer P.L.: Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149, 245–265 (1997)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Del Pino M., Felmer P.L.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. non Linéaire 15, 127–149 (1998)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Del Pino M., Felmer P.L.: Semi-classical states for nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324, 1–32 (2002)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Del Pino M., Felmer P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Del Pino M., Felmer P.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 15(2), 127–149 (1998)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    do Ó, J.M., Severo, U.: Solitary waves for a class of quasilinear Schrödinger quations in dimension two. Calc. Var. (2009). doi:10.1007/s00526-009-0286-6
  19. 19.
    do Ó J.M., Severo U.: Quasilinear Schrödinger quations involving concave and convex nonlinrearities. Commun. Pure Appl. Anal. 8, 621–644 (2009)MathSciNetMATHGoogle Scholar
  20. 20.
    do Ó J.M., Miyagaki O.H., Soares S.H.M.: Soliton solutions for quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 248, 722–744 (2010)MATHCrossRefGoogle Scholar
  21. 21.
    Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Gidas B., Ni W.M., Nirenberg L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}^N}\). In: Nachbin, L. (ed.) Math. Analysis and Appl., Part A, Adv. Math. Suppl. Studies 7A, pp. 369–402. Academic Press, London (1981)Google Scholar
  23. 23.
    Gilbarg D., Trudinger N.S.: Elliptic partical differential equation of second order. Springer, Berlin (1989)Google Scholar
  24. 24.
    Jeanjean L., Tanaka K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Partial Differ. Equ. 21, 287–318 (2004)MathSciNetMATHGoogle Scholar
  25. 25.
    Kang X., Wei J.: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differ. Equ. 5, 899–928 (2000)MathSciNetMATHGoogle Scholar
  26. 26.
    Kurihura S.: Large amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)CrossRefGoogle Scholar
  27. 27.
    Li Y.Y.: On a singularly perturbed elliptic equation. Adv. Differ. Equ. 2, 955–980 (1997)MATHGoogle Scholar
  28. 28.
    Liu J.Q., Wang Z.Q.: Soliton solutions for quasilinear Schrödinger equations. Proc. Am. Math. Soc. 131, 441–448 (2003)MATHCrossRefGoogle Scholar
  29. 29.
    Liu J.Q., Wang Y.Q., Wang Z.Q.: Soliton solutions to quasilinear Schrödinger equations II. J. Differ. Equ. 187, 473–493 (2003)MATHCrossRefGoogle Scholar
  30. 30.
    Moameni A.: Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in \({\mathbb{R}^N}\). J. Differ. Equ. 229, 570–587 (2006)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Moameni A.: On the existence of standing wave soultions to quasilinear Schrödinger equations. Nonlinearity 19, 937–957 (2006)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Moameni A.: On a class of periodic quasilinear Schrödinger equations involving critical growth in \({\mathbb{R}^2}\). J. Math. Anal. Appl. 334, 775–786 (2007)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Nakamura A.: Damping and modification of exciton solitary waves. J. Phys. Soc. Jpn. 42, 1824–1835 (1977)CrossRefGoogle Scholar
  34. 34.
    Ni W.M., Takagi I.: On the shap and the location of least-energy solutions to semilinear Neumann problem. Commun. Pure Appl. Math. 44, 819–851 (1991)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Oh Y.G.: Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)a. Commun. Partial Differ. Equ. 13, 1499–1519 (1988)MATHCrossRefGoogle Scholar
  36. 36.
    Oh Y.G.: Stability of semiclassical bound states of nonlinear Schrödinger equations with potentials. Commun. Math. Phys. 121, 11–33 (1989)MATHCrossRefGoogle Scholar
  37. 37.
    Poppenberg M., Schmitt K., Wang Z.Q.: On the existence of solition solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Protter M.H., Weinberger H.F.: Maximum Principles in Differential Equations. Springer, Berlin (1984)MATHCrossRefGoogle Scholar
  39. 39.
    Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. In: CBMS Regional Conf. Ser. in Math. No., vol. 65. Amer. Math. Soc., Providence (1986)Google Scholar
  40. 40.
    Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Silva E.A., Vieira G.F.: Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc. Var. 39, 1–33 (2010)MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Wang X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)MATHCrossRefGoogle Scholar
  43. 43.
    Wang X.F., Zeng B.: On Concentration of positive bound states of nonlinear Schrödinger equations with competing positive functions. SIAM J. Math. Anal. 28(3), 633–655 (1997)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Willem M.: Minimax Theorems. Birkhäuser, Boston (1996)MATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesTsinghua UniversityBeijingChina

Personalised recommendations