Advertisement

One-dimensional chemotaxis kinetic model

Article

Abstract

In this paper, we study a variation of the equations of a chemotaxis kinetic model and investigate it in one dimension. In fact, we use fractional diffusion for the chemoattractant in the Othmar–Dunbar–Alt system (Othmer in J Math Biol 26(3):263–298, 1988). This version was exhibited in Calvez in Amer Math Soc, pp 45–62, 2007 for the macroscopic well-known Keller–Segel model in all space dimensions. These two macroscopic and kinetic models are related as mentioned in Bournaveas, Ann Inst H Poincaré Anal Non Linéaire, 26(5):1871–1895, 2009, Chalub, Math Models Methods Appl Sci, 16(7 suppl):1173–1197, 2006, Chalub, Monatsh Math, 142(1–2):123–141, 2004, Chalub, Port Math (NS), 63(2):227–250, 2006. The model we study here behaves in a similar way to the original model in two dimensions with the spherical symmetry assumption on the initial data which is described in Bournaveas, Ann Inst H Poincaré Anal Non Linéaire, 26(5):1871–1895, 2009. We prove the existence and uniqueness of solutions for this model, as well as a convergence result for a family of numerical schemes. The advantage of this model is that numerical simulations can be easily done especially to track the blow-up phenomenon.

Mathematics Subject Classification (2000)

Primary 92C17 60J75 Secondary 35L60 92B05 

Keywords

Keller–Segel model Othmar–Dunbar–Alt system Chemotaxis Kinetic model Fractional diffusion Hilbert transform Numerical simulation 

References

  1. 1.
    Adams, R.A.: Sobolev spaces. Academic Press (A subsidiary of Harcourt Brace Jovanovich, Publishers), New York, London. Pure Appl. Math. 65 (1975)Google Scholar
  2. 2.
    Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Diff. Equ. pages no. 44, 32 pp. (electronic) (2006)Google Scholar
  3. 3.
    Bournaveas N., Calvez V.: Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables. Kinet. Relat. Models 1(1), 29–48 (2008)MATHMathSciNetGoogle Scholar
  4. 4.
    Bournaveas N., Calvez V.: Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1871–1895 (2009)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bournaveas N., Calvez V., Gutiérrez S., Perthame B.: Global existence for a kinetic model of chemotaxis via dispersion and Strichartz estimates. Comm. Partial Diff. Equ. 33(1–3), 79–95 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Calvez V., Corrias L.: The parabolic-parabolic Keller–Segel model in \({\mathbb R^2}\). Commun. Math. Sci. 6(2), 417–447 (2008)MATHMathSciNetGoogle Scholar
  7. 7.
    Calvez, V., Perthame, B., Sharifi tabar, M.: Modified Keller–Segel system and critical mass for the log interaction kernel. In: Stochastic analysis and partial differential equations, volume 429 of Contemp. Math., pp. 45–62. Amer. Math. Soc., Providence, RI (2007)Google Scholar
  8. 8.
    Chalub F., Dolak-Struss Y., Markowich P., Oelz D., Schmeiser C., Soreff A.: Model hierarchies for cell aggregation by chemotaxis. Math. Models Methods Appl. Sci. 16(7 Suppl), 1173–1197 (2006)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Chalub F.A.C.C., Markowich P.A., Perthame B., Schmeiser C.: Kinetic models for chemotaxis and their drift-diffusion limits. Monatsh. Math. 142(1–2), 123–141 (2004)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Chalub F.A.C.C., Rodrigues J.F.: A class of kinetic models for chemotaxis with threshold to prevent overcrowding. Port. Math. (NS) 63(2), 227–250 (2006)MATHMathSciNetGoogle Scholar
  11. 11.
    Corrias L., Perthame B., Zaag H.: Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 72, 1–28 (2004)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Dickinson R.B., Tranquillo R.T.: A stochastic model for cell random motility and haptotaxis based on adhesion receptor fluctuations. J. Math. Biol. 31, 563–600 (1993)CrossRefMATHGoogle Scholar
  13. 13.
    Erban, R., Othmer, H.G.: From individual to collective behavior in bacterial chemotaxis. SIAM J. Appl. Math. 65(2), 361–391 (electronic) (2004/2005)Google Scholar
  14. 14.
    Erban R., Othmer H.G.: From signal transduction to spatial pattern formation in E. coli: a paradigm for multiscale modeling in biology. Multiscale Model. Simul. 3(2), 362–394 (2005) (electronic)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Erban R., Othmer H.G.: Taxis equations for amoeboid cells. J. Math. Biol. 54(6), 847–885 (2007)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Hillen T.: M5 mesoscopic and macroscopic models for mesenchymal motion. J. Math. Biol. 53(4), 585–616 (2006)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hwang H.J., Kang K., Stevens A.: Global solutions of nonlinear transport equations for chemosensitive movement. SIAM J. Math. Anal. 36(4), 1177–1199 (2005) (electronic)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Jäger W., Luckhaus S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 329(2), 819–824 (1992)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)CrossRefGoogle Scholar
  20. 20.
    Othmer H.G., Dunbar S.R., Alt W.: Models of dispersal in biological systems. J. Math. Biol. 26(3), 263–298 (1988)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Othmer H.G., Hillen T.: The diffusion limit of transport equations. II. Chemotaxis equations. SIAM J. Appl. Math. 62(4), 1222–1250 (2002) (electronic)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Stoer, J., Bulirsch, R.: Introduction to numerical analysis, volume 12 of Texts in Applied Mathematics. 3rd edn. Springer, New York, 2002 (Translated from the German by R. Bartels, W. Gautschi and C. Witzgall)Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Sharif University of TechnologyTehranIran
  2. 2.Lab. de Math. de Versailles (LMV-UMR8100)UVSQVersailles cedexFrance

Personalised recommendations