Advertisement

Multiple solutions for nonhomogeneous Schrödinger–Maxwell and Klein– Gordon–Maxwell equations on R 3

  • Shang-Jie Chen
  • Chun-Lei TangEmail author
Article

Abstract

In this paper we study the following nonhomogeneous Schrödinger–Maxwell equations
$$\left\{\begin{array}{ll} {-\triangle u+V(x)u+ \phi u=f(x,u)+h(x),} \quad {\rm in}\,\,\,{\mathbf{R}}^3,\\ {-\triangle \phi=u^2, \qquad\qquad\qquad\qquad\qquad\qquad\,\,\, {\rm in} \,\,{\mathbf{R}}^3,} \end{array} \right.$$
where f satisfies the Ambrosetti–Rabinowitz type condition. Under appropriate assumptions on V, f and h, the existence of multiple solutions is proved by using the Ekeland’s variational principle and the Mountain Pass Theorem in critical point theory. Similar results for the nonhomogeneous Klein–Gordon–Maxwell equations
$$\left\{\begin{array}{ll} {-\triangle u+[m^2-(\omega+\phi)^2]u=|u|^{q-2}u+h(x), \quad {\rm in} \,\,\,{\mathbf{R}}^3,}\\ {-\triangle \phi+ \phi u^2=-\omega u^2, \qquad\qquad\qquad\qquad\qquad\,\,\, {\rm in} \,\,\,{\mathbf{R}}^3,} \end{array} \right.$$
are also obtained when 2 < q < 6.

Mathematics Subject Classification (2000)

35J91(35B38) 

Keywords

Schrödinger–Maxwell equations Klein–Gordon–Maxwell equations Nonhomogeneous Superlinear Ekeland’s variational principle Mountain Pass Theorem Variational methods 

References

  1. 1.
    Azzollini A., Pomponio A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345(1), 90–108 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Klein–Gordon–Maxwell equations. PreprintGoogle Scholar
  3. 3.
    Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ambrosetti A., Ruiz D.: Multiple bound states for the Schrödinger–Poisson problem. Commun. Contemp. Math. 10(3), 391–404 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bartsch T., Wang Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on R N. Comm. Partial Differ. Equ. 20(9–10), 1725–1741 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Benci V., Fortunato D.: Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14(4), 409–420 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Benci, V., Fortunato, D.: The nonlinear Kleino–Gordon equation coupled with the Maxwell equations. In: Proceedings of the Third World Congress of Nonlinear Analysts, Part 9 (Catania, 2000). Nonlinear Anal., vol. 47(9), 6065–6072 (2001)Google Scholar
  8. 8.
    Benci V., Fortunato D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11(2), 283–293 (1998)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Benci V., Fortunato D., Masiello A., Pisani L.: Solitons and the electromagnetic field. Math. Z. 232(1), 73–102 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Candela A.M., Salvatore A.: Multiple solitary waves for non-homogeneous Schrödinger–Maxwell equations. Mediterr. J. Math. 3(3–4), 483–493 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cassani D.: Existence and non-existence of solitary waves for the critical Klein–Gordon equation coupled with Maxwell’s equations. Nonlinear Anal. 58(7–8), 733–747 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chen S.-J., Tang C.-L.: High energy solutions for the superlinear Schrödinger–Maxwell equations. Nonlinear Anal. 71(10), 4927–4934 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Coclite G.M.: A multiplicity result for the nonlinear Schrödinger–Maxwell equations. Commun. Appl. Anal. 7(2–3), 417–423 (2003)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Coclite G.M.: A multiplicity result for the Schrödinger–Maxwell equations with negative potential. Ann. Polon. Math. 79(1), 21–30 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    D’Aprile T., Mugnai D.: Non-existence results for the coupled Klein–Gordon–Maxwell equations. Adv. Nonlinear Stud. 4(3), 307–322 (2004)zbMATHMathSciNetGoogle Scholar
  17. 17.
    D’Aprile T., Mugnai D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134(5), 893–906 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Ekeland I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Springerg, Berlin (2001)Google Scholar
  20. 20.
    Kikuchi H.: On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations. Nonlinear Anal. 67(5), 1445–1456 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Mawhin J., Willem M.: Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences, 74. Springer, New York (1989)Google Scholar
  22. 22.
    Mercuri C.: Positive solutions of nonlinear Schrödinger–Poisson systems with radial potentials vanishing at infinity. (English summary) Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19(3), 211–227 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics, 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (1986)Google Scholar
  24. 24.
    Ruiz D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237(2), 655–674 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Salvatore A.: Multiple solitary waves for a non-homogeneous Schrödinger–Maxwell system in R 3. Adv. Nonlinear Stud. 6(2), 157–169 (2006)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Strauss W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55(2), 149–162 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Wang Z.-P., Zhou H.-S.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in R 3. Discrete Contin. Dyn. Syst. 18(4), 809–816 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Zhao L.-G., Zhao F.-K.: Positive solutions for Schrödinger–Poisson equations with a critical exponent. Nonlinear Anal. 70(6), 2150–2164 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Zhao L.-G., Zhao F.-K.: On the existence of solutions for the Schrödinger– Poisson equations. J. Math. Anal. Appl. 346(1), 155–169 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Zou W.-M., Schechter M.: Critical point theory and its applications. Springer, New York (2006)zbMATHGoogle Scholar

Copyright information

© Birkhäuser / Springer Basel AG 2010

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations