Advertisement

Selecta Mathematica

, 25:69 | Cite as

Categorified canonical bases and framed BPS states

  • Dylan G. L. AllegrettiEmail author
Article
  • 5 Downloads

Abstract

We consider a cluster variety associated to a triangulated surface without punctures. The algebra of regular functions on this cluster variety possesses a canonical vector space basis parametrized by certain measured laminations on the surface. To each lamination, we associate a graded vector space, and we prove that the graded dimension of this vector space gives the expansion in cluster coordinates of the corresponding basis element. We discuss the relation to framed BPS states in \({\mathcal {N}}=2\) field theories of class \({\mathcal {S}}\).

Mathematics Subject Classification

13F60 16G20 81T60 

Notes

Acknowledgements

In writing this paper, I have benefitted from conversations with many people, including Tom Bridgeland, Michele Cirafici, Michele Del Zotto, Joseph Karmazyn, Daniel Labardini-Fragoso, Sven Meinhardt, Andrew Neitzke, Harold Williams, and Yu Zhou.

References

  1. 1.
    Allegretti, D.G.L.: A duality map for the quantum symplectic double (2016). arXiv:1605.01599 [math.QA]
  2. 2.
    Allegretti, D.G.L.: The geometry of cluster varieties from surfaces (2016). arXiv:1606.07788 [math.AG]
  3. 3.
    Allegretti, D.G.L.: Laminations from the symplectic double. Geom. Dedicata. 199(1), 27–86 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Allegretti, D.G.L., Kim, H.K.: A duality map for quantum cluster varieties from surfaces. Adv. Math. 306, 1164–1208 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with potential. Annales de l’Institut Fourier 59(6), 2525–2590 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Assem, I., Brüstle, T., Charbonneau-Jodoin, G., Plamondon, P.G.: Gentle algebras arising from surface triangulations. Algebra Number Theory 4(2), 201–229 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bonahon, F., Wong, H.: Quantum traces for representations of surface groups in \(SL_2({\mathbb{C}})\). Geom. Topol. 15(3), 1569–1615 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. 166(2), 317–345 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bridgeland, T.: Scattering diagrams, Hall algebras and stability conditions. Algebraic Geom. 4(5), 523–561 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bridgeland, T., Smith, I.: Quadratic differentials as stability conditions. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 121(1), 155–278 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Brüstle, T., Zhang, J.: On the cluster category of a marked surface without punctures. Algebra Number Theory 5(4), 529–566 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Commentarii Mathematici Helvetici 81(3), 596–616 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (\(A_n\) case). Trans. Am. Math. Soc. 358(3), 1347–1364 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Caorsi, M., Cecotti, S.: Categorical Webs and \(S\)-duality in 4d \({\cal{N}}=2\) QFT. Commun. Math. Phys. 368(3), 885–984 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Carnakci, I., Lampe, P.: An expansion formula for type A and Kronecker quantum cluster algebras (2018). arXiv:1807.07539 [math.QA]
  16. 16.
    Cautis, S., Williams, H.: Cluster theory of the coherent Satake category. J. Am. Math. Soc. 32(3), 709–778 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Cerulli Irelli, G., Dupont, G., Esposito, F.: A homological interpretation of the transverse quiver Grassmannians. Algebras Represent. Theory 16(2), 437–444 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Cerulli Irelli, G., Esposito, F.: Geometry of quiver Grassmannians of Kronecker type and canonical basis of cluster algebras. Algebra Number Theory 5(6), 777–801 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Cho, S.Y., Kim, H., Kim, H.K., Oh, D.: Laurent positivity of quantized canonical bases for quantum cluster varieties from surfaces. Commun. Math. Phys. 1–51 (2019)Google Scholar
  20. 20.
    Chuang, W.Y., Diaconescu, D.E., Manschot, J., Moore, G., Soibelman, Y.: Geometric engineering of (framed) BPS states. Adv. Theor. Math. Phys. 18(5), 1063–1231 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Cirafici, M.: Line defects and (framed) BPS quivers. J. High Energy Phys. 11, 141 (2013)zbMATHCrossRefGoogle Scholar
  22. 22.
    Cirafici, M.: Quivers, line defects, and framed BPS invariants. Annales Henri Poincaré 19(1), 1–70 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Cirafici, M., Del Zotto, M.: Discrete integrable systems, supersymmetric quantum mechanics, and framed BPS states—I (2017). arXiv:1703.04786 [hep-th]
  24. 24.
    Córdova, C., Neitzke, A.: Line defects, tropicalization, and multi-centered quiver quantum mechanics. J. High Energy Phys. 9, 99 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations I: mutations. Sel. Math. New Ser. 14(1), 59–119 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations II: applications to cluster algebras. J. Am. Math. Soc. 23(3), 749–790 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Domínguez, S.: Arc representations (2017). arXiv:1709.09521 [math.RT]
  28. 28.
    Dupont, G.: Transverse quiver Grassmannians and bases in affine cluster algebras. Algebra Number Theory 4(5), 599–624 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Dupont, G.: Generic variables in acyclic cluster algebras. J. Pure Appl. Algebra 215(4), 628–641 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Dupont, G., Thomas, H.: Atomic bases of cluster algebras of types \(A\) and \({\tilde{A}}\). Proc. Lond. Math. Soc. 107(4), 825–850 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Efimov, A.I.: Quantum cluster variables via vanishing cycles (2011). arXiv:1112.3601 [math.AG]
  32. 32.
    Fedotov, S.: Framed moduli and Grassmannians of submodules. Trans. Am. Math. Soc. 365(8), 4153–4179 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Mathématiques de l’Institut des Hautes Études Scientifiques 103(1), 1–211 (2006)zbMATHCrossRefGoogle Scholar
  34. 34.
    Fock, V.V., Goncharov, A.B.: Dual Teichmüller and lamination spaces. Handbook of Teichmüller theory I, IRMA Lectures in Mathematics and Theoretical Physics 11, 647–684 (2007)Google Scholar
  35. 35.
    Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. Part I: Cluster complexes. Acta Math. 201(1), 83–146 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Fomin, S., Zelevinsky, A.: Cluster algebras IV: coefficients. Compos. Math. 143(01), 112–164 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS states. Adv. Theor. Math. Phys. 17(2), 241–397 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Goncharov, A., Shen, L.: Donaldson-Thomas transformations of moduli spaces of \(G\)-local systems. Adv. Math. 327, 225–348 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Gross, M., Hacking, P., Keel, S.: Birational geometry of cluster algebras. Algebraic Geom. 2(2), 137–175 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Am. Math. Soc. 31(2), 497–608 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Haupt, N.: Euler characteristics of quiver Grassmannians and Ringel-Hall algebras of string algebras. Algebras Represent. Theory 15(4), 739–755 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Keller, B., Yang, D.: Derived equivalences from mutations of quivers with potential. Adv. Math. 226(3), 2118–2168 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Labardini-Fragoso, D.: Quivers with potential associated to triangulated surfaces. Proc. Lond. Math. Soc. 98(3), 797–839 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Labardini-Fragoso, D.: Quivers with potentials associated to triangulated surfaces, Part II: Arc representations (2009). arXiv:0909.4100 [math.RT]
  45. 45.
    Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Muller, G.: Skein algebras and cluster algebras of marked surfaces. Quantum Topol. 7(3), 425–503 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Musiker, G., Williams, L.: Matrix formulae and skein relations for cluster algebras from surfaces. Int. Math. Res. Not. 13, 2891–2944 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Musiker, G., Schiffler, R., Williams, L.: Bases for cluster algebras from surfaces. Compos. Math. 149(2), 217–263 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Qin, F., Keller, B.: Quantum cluster variables via Serre polynomials. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 668, 149–190 (2012)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Qiu, Y., Zhou, Y.: Cluster categories for marked surfaces: punctured case. Compos. Math. 153(9), 1779–1819 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Reading, N.: Universal geometric cluster algebras from surfaces. Trans. Am. Math. Soc. 366(12), 6647–6685 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Reineke, M.: Framed quiver moduli, cohomology, and quantum groups. J. Algebra 320(1), 94–115 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Rupel, D.: On quantum analog of the Caldero–Chapoton formula. Int. Math. Res. Not. 14, 3207–3236 (2011)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Seidel, P., Thomas, R.: Braid group actions on derived categories. Duke Math. J. 108(1), 37–108 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Thurston, D.: Positive basis for surface skein algebras. Proc. Nat. Acad. Sci. 111(27), 9725–9732 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Williams, H.: Toda systems, cluster characters, and spectral networks. Commun. Math. Phys. 348(1), 145–184 (2016)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mathematical Sciences Research InstituteBerkeleyUSA

Personalised recommendations