A primitive element theorem for fields with commuting derivations and automorphisms
Article
First Online:
- 45 Downloads
Abstract
We establish a Primitive Element Theorem for fields equipped with several commuting operators such that each of the operators is either a derivation or an automorphism. More precisely, we show that for every extension \(F \subset E\) of such fields of zero characteristic such that there exists an element \(a \in E\) such that E is generated over F by a using the field operations and the operators. This result generalizes the Primitive Element Theorems by Kolchin and Cohn in two directions simultaneously: we allow any numbers of derivations and automorphisms and do not impose any restrictions on the base field F.
-
E is generated over F by finitely many elements using the field operations and the operators,
-
every element of E satisfies a nontrivial equation with coefficient in F involving the field operations and the operators,
-
the action of the operators on E is irredundant
Keywords
Primitive element Differential field Difference field Fields with operatorsMathematics Subject Classification
Primary 12H05 12H05 Secondary 12F99Notes
Acknowledgements
The author is grateful to Lei Fu, Alexey Ovchinnikov, Thomas Scanlon, and the referee for their suggestions and helpful discussions. This work has been partially supported by NSF Grants CCF-1564132, CCF-1563942, DMS-1853482, DMS-1853650, and DMS-1760448, by PSC-CUNY Grants #69827-0047 and #60098-0048.
References
- 1.Andrews, G .E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/CBO9781107325937 CrossRefGoogle Scholar
- 2.Bélair, L.: Approximation for Frobenius algebraic equations in Witt vectors. J. Algebra 321(9), 2353–2364 (2009). https://doi.org/10.1016/j.jalgebra.2009.01.021 MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Bell, D.J., Lu, X.Y.: Differential algebraic control theory. IMA J. Math. Control Inf. 9(4), 361–383 (1992). https://doi.org/10.1093/imamci/9.4.361 MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Blossier, T., Hardouin, C., Martin-Pizarro, A.: Sur les automorphismes bornés de corps munis d’opérateurs. Math. Res. Lett. 24(4), 955–978 (2017). https://doi.org/10.4310/MRL.2017.v24.n4.a2 MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Brouette, Q., Point, F.: On differential Galois groups of strongly normal extensions. Math. Logic Q. 64(3), 155–169 (2018). https://doi.org/10.1002/malq.201600098 MathSciNetCrossRefGoogle Scholar
- 6.Chatzidakis, Z.: Model theory of fields with operators—a survey. In : Villaveces A, Kossak R, Kontinen J, Hirvonen Å (eds) Logic Without Borders—Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, pp. 91–114. (2015). https://doi.org/10.1515/9781614516873.91
- 7.Chatzidakis, Z., Hrushovski, E.: Model theory of difference fields. Trans. Am. Math. Soc. 351, 2997–3071 (1999). https://doi.org/10.1090/S0002-9947-99-02498-8 MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Cluzeau, T., Hubert, E.: Resolvent representation for regular differential ideals. Appl. Algebra Eng. Commun. Comput. 13(5), 395–425 (2003). https://doi.org/10.1007/s00200-002-0110-4 MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Cluzeau, T., Hubert, E.: Probabilistic algorithms for computing resolvent representations of regular differential ideals. Appl. Algebra Eng. Commun. Comput. 19(5), 365–392 (2008). https://doi.org/10.1007/s00200-008-0079-8 MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Cohn, R.M.: Difference Algebra. Interscience Publishers, Geneva (1965)zbMATHGoogle Scholar
- 11.D’Alfonso, L., Jeronimo, G., Solerno, P.: Quantitative aspects of the generalized differential Lüroth’s theorem. J. Algebra 507, 547–570 (2018). https://doi.org/10.1016/j.jalgebra.2018.01.050 MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Fliess, M.: Generalized controller canonical form for linear and nonlinear dynamics. IEEE Trans. Autom. Control 35(9), 994–1001 (1990). https://doi.org/10.1109/9.58527 MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Freitag, J., Li, W.: Simple Differential Field Extensions and Effective Bounds. Lecture Notes in Computer Science, vol. 9582, pp. 343–357. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32859-1_29 CrossRefzbMATHGoogle Scholar
- 14.Gao, X., Van der Hoeven, J., Yuan, C., Zhang, G.: Characteristic set method for differential-difference polynomial systems. J. Symb. Comput. 44(9), 1137–1163 (2009). https://doi.org/10.1016/j.jsc.2008.02.010 MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Hardouin, C., Singer, M.F.: Differential Galois theory of linear difference equations. Math. Ann. 342(2), 333–377 (2008). https://doi.org/10.1007/s00208-008-0238-z MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Kamensky, M.: Tannakian formalism over fields with operators. Int. Math. Res. Notices 2013(24), 5571–5622 (2013). https://doi.org/10.1093/imrn/rns190 MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Kolchin, E.R.: Extensions of differential fileds. Ann. Math. 43(4), 724–729 (1942)MathSciNetCrossRefGoogle Scholar
- 18.Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)zbMATHGoogle Scholar
- 19.Kondratieva, M.V., Levin, A.B., Mikhalev, A.V., Pankratiev, E.V.: Differential and Difference Dimension Polynomials. Springer, Dordrecht (2010)zbMATHGoogle Scholar
- 20.Levin, A.B. : Multivariate difference-differential dimension polynomials and new invariants of difference-differential field extensions. In: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ISSAC ’13, pp. 267–274, (2013). https://doi.org/10.1145/2465506.2465521
- 21.Levin, A.B.: Difference Algebra. Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-6947-5 CrossRefzbMATHGoogle Scholar
- 22.Loos, R.: Computing in Algebraic Extensions, pp. 173–187. Springer, Vienna (1983). https://doi.org/10.1007/978-3-7091-7551-4_12 CrossRefGoogle Scholar
- 23.Marker, D.: Chapter 2: Model Theory of Differential Fields, of Lecture Notes in Logic, vol. 5, pp. 38–113. Springer, Berlin, (1996). https://projecteuclid.org/euclid.lnl/1235423156
- 24.Medina, R.F.B.: Differentially closed fields of characteristic zero with a generic automorphism. Rev. de Mat. Teor. y Apl. 14(1), 81–100 (2007). https://doi.org/10.15517/rmta.v14i1.282 MathSciNetCrossRefGoogle Scholar
- 25.Miller, R., Ovchinnikov, A., Trushin, D.: Computing constraint sets for differential fields. J. Algebra 407, 316–357 (2014). https://doi.org/10.1016/j.jalgebra.2014.02.032 MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Moosa, R., Scanlon, T.: Jet and prolongation spaces. J. Inst. Math. Jussieu 9(2), 391–430 (2010). https://doi.org/10.1017/S1474748010000010 MathSciNetCrossRefzbMATHGoogle Scholar
- 27.Moosa, R., Scanlon, T.: Model theory of fields with free operators in characteristic zero. J. Math. Logic 14(2), 1450009 (2014). https://doi.org/10.1142/S0219061314500093 MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Ohyama, Y.: Differential relations of theta functions. Osaka J. Math. 32(2), 431–450 (1995)MathSciNetzbMATHGoogle Scholar
- 29.Ostrowski, A.: Über Dirichletsche Reihen und algebraische Differentialgleichungen. Math. Z. 8(3–4), 241–298 (1920). https://doi.org/10.1007/BF01206530 MathSciNetCrossRefzbMATHGoogle Scholar
- 30.Pogudin, G.: The primitive element theorem for differential fields with zero derivation on the base field. J. Pure Appl. Algebra 219(9), 4035–4041 (2015). https://doi.org/10.1016/j.jpaa.2015.02.004 MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Ritt, J.F.: Differential Equations from the Algebraic Standpoint. Colloquium Publications. American Mathematical Society, Providence (1932)CrossRefGoogle Scholar
- 32.Sánchez, O.L.: On the model companion of partial differential fields with an automorphism. Isr. J. Math. 212(1), 419–442 (2016). https://doi.org/10.1007/s11856-016-1292-y MathSciNetCrossRefzbMATHGoogle Scholar
- 33.Seidenberg, A.: Abstract differential algebra and the analytic case. II. In: Proceedings of the American Mathematical Society, vol. 23, no. 3, pp. 689–691, (1969). URL https://www.jstor.org/stable/2036611
- 34.Seidenberg, A.: Abstract differential algebra and the analytic case. In: Proceedings of the American Mathematical Society, vol. 9, no. 1, pp. 159–164, (1958). URL https://www.jstor.org/stable/2033416
- 35.Seidenberg, A.: Some basic theorems in differential algebra (characteristic p, arbitrary). Trans. Am. Math. Soc. 73(1), 174–190 (1952)MathSciNetzbMATHGoogle Scholar
- 36.Singer, M.F.: The model theory of ordered differential fields. J. Symb. Logic 43(1), 82–91 (1978)MathSciNetCrossRefGoogle Scholar
- 37.van der Waerden, B.: Algebra. Springer, New York (1991)CrossRefGoogle Scholar
- 38.Wood, C.: Prime model extensions for differential fields of characteristic \(p \ne 0\). J. Symb. Logic 39(3), 469–477 (1974). https://doi.org/10.2307/2272889 Google Scholar
Copyright information
© Springer Nature Switzerland AG 2019