# Reducible *M*-curves for Le-networks in the totally-nonnegative Grassmannian and KP-II multiline solitons

## Abstract

We associate real and regular algebraic–geometric data to each multi-line soliton solution of Kadomtsev–Petviashvili II (KP) equation. These solutions are known to be parametrized by points of the totally non-negative part of real Grassmannians \(Gr^{\mathrm{TNN}}(k,n)\). In [3] we were able to construct real algebraic–geometric data for soliton data in the main cell \(Gr^{\mathrm{TP}} (k,n)\) only. Here we do not just extend that construction to all points in \(Gr^{\mathrm{TNN}}(k,n)\), but we also considerably simplify it, since both the reducible rational \(\texttt {M}\)-curve \(\Gamma \) and the real regular KP divisor on \(\Gamma \) are directly related to the parametrization of positroid cells in \(Gr^{\mathrm{TNN}}(k,n)\) via the Le-networks introduced in [63]. In particular, the direct relation of our construction to the Le-networks guarantees that the genus of the underlying smooth \(\texttt {M}\)-curve is minimal and it coincides with the dimension of the positroid cell in \(Gr^{\mathrm{TNN}}(k,n)\) to which the soliton data belong to. Finally, we apply our construction to soliton data in \(Gr^{\mathrm{TP}}(2,4)\) and we compare it with that in [3].

## Keywords

Total positivity Totally non-negative Grassmannians KP hierarchy Real solitons M-curves Le-diagrams Planar bicolored networks in the disk Baker–Akhiezer function## Mathematics Subject Classification

37K40 37K20 14H50 14H70## Notes

### Acknowledgements

The authors would like to express their gratitude to the referee for careful reading of the manuscript and useful remarks.

## References

- 1.Abenda, S.: On a family of KP multi-line solitons associated to rational degenerations of real hyperelliptic curves and to the finite non-periodic Toda hierarchy. J. Geom. Phys.
**119**, 112–138 (2017)MathSciNetzbMATHGoogle Scholar - 2.Abenda, S.: On some properties of KP-II soliton divisors in \(Gr^{{\rm TP}}(2,4)\). Ric. Mat.
**68**(1), 75–90 (2019)MathSciNetGoogle Scholar - 3.Abenda, S., Grinevich, P.G.: Rational degenerations of M-curves, totally positive Grassmannians and KP-solitons. Commun. Math. Phys.
**361**(3), 1029–1081 (2018)zbMATHGoogle Scholar - 4.Abenda, S., Grinevich, P.G.: KP theory, plabic networks in the disk and rational degenerations of M-curves. arXiv:1801.00208
- 5.Abenda, S., Grinevich, P.G.: Real soliton lattices of the Kadomtsev–Petviashvili II equation and desingularization of spectral curves: the \(Gr^{{\rm TP}}(2,4)\) case. Proceedings of the Steklov Institute of Mathematics, vol. 302(1), pp. 1–15 (2018)Google Scholar
- 6.Arbarello, E., Cornalba, M., Griffiths, P.A.: Geometry of Algebraic Curves. Volume II. With a Contribution by Joseph Daniel Harris, Grundlehren der Mathematischen Wissenschaften, vol. 268. Springer, Heidelberg (2011)zbMATHGoogle Scholar
- 7.Arkani-Hamed, N., Bourjaily, J.L., Cachazo, F., Goncharov, A.B., Postnikov, A., Trnka, J.: Scattering amplitudes and the positive Grassmannian. arXiv:1212.5605
- 8.Arkani-Hamed, N., Bourjaily, J.L., Cachazo, F., Goncharov, A.B., Postnikov, A., Trnka, J.: Grassmannian Geometry of Scattering Amplitudes. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
- 9.Atiyah, M., Dunajski, M., Mason, L.J.: Twistor theory at fifty: from contour integrals to twistor strings. Proc. A
**473**, 20170530 (2017)MathSciNetzbMATHGoogle Scholar - 10.Baker, M., Norine, S.: Riemann–Roch and Abel–Jacobi theory on a finite graph. Adv. Math.
**215**(2), 766–788 (2007)MathSciNetzbMATHGoogle Scholar - 11.Biondini, G., Chakravarty, S.: Soliton solutions of the Kadomtsev–Petviashvili II equation. J. Math. Phys.
**47**, 033514 (2006)MathSciNetzbMATHGoogle Scholar - 12.Boiti, M., Pempinelli, F., Pogrebkov, A.K., Prinari, B.: Towards an inverse scattering theory for non-decaying potentials of the heat equation. Inverse Probl.
**17**, 937–957 (2001)MathSciNetzbMATHGoogle Scholar - 13.Buchstaber, V., Glutsyuk, A.: Total positivity, Grassmannian and modified Bessel functions. arXiv:1708.02154
- 14.Buchstaber, V.M., Glutsyuk, A.A.: On determinants of modified Bessel functions and entire solutions of double confluent Heun equations. Nonlinearity
**29**, 3857–3870 (2016)MathSciNetzbMATHGoogle Scholar - 15.Buchstaber, V.M., Terzic, S.: Topology and geometry of the canonical action of \(T^4\) on the complex Grassmannian \(G_{4,2}\) and the complex projective space \({\mathbb{CP}}^5\). Mosc. Math. J.
**16**(2), 237–273 (2016)MathSciNetzbMATHGoogle Scholar - 16.Buchstaber, V.M., Terzic, S.: Toric topology of the complex Grassmann manifolds. arXiv:1802.06449v2 (2018)
- 17.Chakravarty, S., Kodama, Y.: Classification of the line-solitons of KPII. J. Phys. A Math. Theor.
**41**, 275209 (2008)MathSciNetzbMATHGoogle Scholar - 18.Chakravarty, S., Kodama, Y.: Soliton solutions of the KP equation and application to shallow water waves. Stud. Appl. Math.
**123**, 83–151 (2009)MathSciNetzbMATHGoogle Scholar - 19.Dickey, L.A.: Soliton Equations and Hamiltonian Systems. Advanced Series in Mathematical Physics, vol. 26, 2nd edn. World Scientific Publishing Co., Inc., River Edge, NJ (2003)Google Scholar
- 20.Dimakis, A., Müller-Hoissen, F.: KP line solitons and Tamari lattices. J. Phys. A
**44**(2), 025203 (2011)MathSciNetzbMATHGoogle Scholar - 21.Dryuma, V.S.: Analytic solution of the two-dimensional Korteweg–de Vries (KdV) equation. JETP Lett.
**19**(12), 387–388 (1973)Google Scholar - 22.Dubrovin, B.A.: Theta functions and non-linear equations. Russ. Math. Surv.
**36**(2), 11–92 (1981)zbMATHGoogle Scholar - 23.Dubrovin, B.A., Malanyuk, T.M., Krichever, I.M., Makhankov, V.G.: Exact solutions of the time-dependent Schrödinger equation with self-consistent potentials. Soviet J. Particles Nuclei
**19**(3), 252–269 (1988)MathSciNetGoogle Scholar - 24.Dubrovin, B.A., Krichever, I.M., Novikov, S.P.: Integrable systems I. Dynamical Systems, IV. In: Arnol’d, V.I., Novikov, S.P.: (eds.) Encyclopaedia of Mathematical Sciences, vol. 4, pp. 177–332. Springer, Berlin (2001)Google Scholar
- 25.Dubrovin, B.A., Natanzon, S.M.: Real theta-function solutions of the Kadomtsev–Petviashvili equation. Izv. Akad. Nauk SSSR Ser. Mat.
**52**, 267–286 (1988)zbMATHGoogle Scholar - 26.Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. I.H.E.S.
**103**, 1–211 (2006)zbMATHGoogle Scholar - 27.Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. J. Am. Math. Soc.
**12**, 335–380 (1999)MathSciNetzbMATHGoogle Scholar - 28.Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc.
**15**, 497–529 (2002)MathSciNetzbMATHGoogle Scholar - 29.Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg de Vries and the Kadomtsev–Petviashvili equations: the Wronskian technique. Proc. R. Soc. Lond. A
**389**, 319–329 (1983)MathSciNetzbMATHGoogle Scholar - 30.Gantmacher, F.R., Krein, M.G.: Sur les matrices oscillatoires. C. R. Acad. Sci. Paris
**201**, 577–579 (1935)zbMATHGoogle Scholar - 31.Gantmacher, F.R., Krein, M.G.: Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems (Russian). Gostekhizdat, Moscow-Leningrad (1941) [second edition (1950); revised English edition from AMS Chelsea Publ (2002)]Google Scholar
- 32.Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs, vol. 167. American Mathematical Society, Providence, RI (2010)zbMATHGoogle Scholar
- 33.Gel’fand, I.M., Goresky, R.M., MacPherson, R.D., Serganova, V.V.: Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math.
**63**(3), 301–316 (1987)MathSciNetzbMATHGoogle Scholar - 34.Gel’fand, I.M., Serganova, V.V.: Combinatorial geometries and torus strata on homogeneous compact manifolds. Russ. Math. Surv.
**42**(2), 133–168 (1987)zbMATHGoogle Scholar - 35.Goncharov, A.B., Kenyon, R.: Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér. (4)
**46**(5), 747–813 (2013)MathSciNetzbMATHGoogle Scholar - 36.Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, Hoboken (1978)zbMATHGoogle Scholar
- 37.Gudkov, D.A.: The topology of real projective algebraic varieties. Russ. Math. Surv.
**29**, 1–79 (1974)MathSciNetzbMATHGoogle Scholar - 38.Harnack, A.: Über die Vieltheiligkeit der ebenen algebraischen Curven. Math. Ann.
**10**, 189–199 (1876)MathSciNetzbMATHGoogle Scholar - 39.Hirota, R.: The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, vol. 155. Cambridge University Press, Cambridge (2004)Google Scholar
- 40.Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry. Oberwolfach Seminars, vol. 35, 2nd edn. Birkhäuser Verlag, Basel (2009)zbMATHGoogle Scholar
- 41.Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl.
**15**, 539–541 (1970)zbMATHGoogle Scholar - 42.Karlin, S.: Total Positivity, vol. 1. Stanford University Press, Stanford (1968)zbMATHGoogle Scholar
- 43.Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. (2)
**163**(3), 1019–1056 (2006)MathSciNetzbMATHGoogle Scholar - 44.Kodama, Y.: Young diagrams and N-soliton solutions of the KP equation. J. Phys. A Math. Gen.
**37**, 11169–11190 (2004)MathSciNetzbMATHGoogle Scholar - 45.Kodama, Y.: KP solitons in shallow water. J. Phys. A Math. Theor.
**43**, 434004 (2010)MathSciNetzbMATHGoogle Scholar - 46.Kodama, Y., Williams, L.K.: The Deodhar decomposition of the Grassmannian and the regularity of KP solitons. Adv. Math.
**244**, 979–1032 (2013)MathSciNetzbMATHGoogle Scholar - 47.Kodama, Y., Williams, L.K.: KP solitons and total positivity for the Grassmannian. Invent. Math.
**198**, 637–699 (2014)MathSciNetzbMATHGoogle Scholar - 48.Krichever, I.M.: An algebraic-geometric construction of the Zakharov–Shabat equations and their periodic solutions. Sov. Math. Dokl.
**17**, 394–397 (1976)zbMATHGoogle Scholar - 49.Krichever, I.M.: Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl.
**11**(1), 12–26 (1977)MathSciNetzbMATHGoogle Scholar - 50.Krichever, I.M.: Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model. Funct. Anal. Appl.
**20**(3), 203–214 (1986)zbMATHGoogle Scholar - 51.Krichever, I.M.: Spectral theory of two-dimensional periodic operators and its applications. Russ. Math. Surv.
**44**(8), 146–225 (1989)MathSciNetzbMATHGoogle Scholar - 52.Krichever, I.M.: The \(\tau \)-function of the universal Whitham hierarchy, matrix models and topological field theories. Commun. Pure Appl. Math.
**47**, 437–475 (1994)MathSciNetzbMATHGoogle Scholar - 53.Lusztig, G.: Total positivity in reductive groups, Lie Theory and Geometry: in honor of B. Kostant, Progress in Mathematics, vol. 123, pp. 531–568. Birkhäuser, Boston (1994)Google Scholar
- 54.Lusztig, G.: Total positivity in partial flag manifolds. Represent. Theory
**2**, 70–78 (1998)MathSciNetzbMATHGoogle Scholar - 55.Malanyuk, T.M.: A class of exact solutions of the Kadomtsev–Petviashvili equation. Russ. Math. Surv.
**46**(3), 225–227 (1991)MathSciNetzbMATHGoogle Scholar - 56.Mnëv, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytope varieties. In: Viro, O.Y. (ed.) Topology and Geometry-Rohlin Seminar. Lecture Notes in Mathematics, vol. 1346, pp. 527–543. Springer, Berlin (1988)Google Scholar
- 57.Marsh, R., Rietsch, K.: Parametrizations of flag varieties. Represent. Theory
**8**, 212–242 (2004)MathSciNetzbMATHGoogle Scholar - 58.Matveev, V.B.: Some comments on the rational solutions of the Zakharov–Schabat equations. Lett. Math. Phys.
**3**, 503–512 (1979)MathSciNetzbMATHGoogle Scholar - 59.Miwa, T., Jimbo, M., Date, E.: Solitons. Differential Equations, Symmetries and Infinite-Dimensional Algebras. Cambridge Tracts in Mathematics, vol. 135. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
- 60.Natanzon, S.M.: Moduli of real algebraic surfaces, and their superanalogues. Differentials, spinors, and Jacobians of real curves. Russ. Math. Surv.
**54**(6), 1091–1147 (1999)zbMATHGoogle Scholar - 61.Novikov, S.P.: The periodic problem for the Korteweg–de vries equation. Funct. Anal. Appl.
**8**(3), 236–246 (1974)MathSciNetzbMATHGoogle Scholar - 62.Pinkus, A.: Totally Positive Matrices, Cambridge Tracts in Mathematics, vol. 181. Cambridge University Press, Cambridge (2010)Google Scholar
- 63.Postnikov, A.: Total positivity, Grassmannians, and networks. arXiv:math/0609764 [math.CO]
- 64.Postnikov, A., Speyer, D., Williams, L.: Matching polytopes, toric geometry, and the totally non-negative Grassmannian. J. Algebraic Combin.
**30**(2), 173–191 (2009)MathSciNetzbMATHGoogle Scholar - 65.Rietsch, K.: An algebraic cell decomposition of the nonnegative part of a flag variety. J. Algebra
**213**(1), 144–154 (1999)MathSciNetzbMATHGoogle Scholar - 66.Sato, M.: Soliton equations as dynamical systems on a infinite dimensional Grassmann manifolds. RIMS Kokyuroku
**439**, 30–46 (1981)Google Scholar - 67.Schoenberg, I.: Über variationsvermindende lineare Transformationen. Math. Zeit.
**32**, 321–328 (1930)zbMATHGoogle Scholar - 68.Taimanov, I.A.: Singular spectral curves in finite-gap integration. Russ. Math. Surv.
**66**(1), 107–144 (2011)MathSciNetzbMATHGoogle Scholar - 69.Talaska, K.: A formula for Plücker coordinates associated with a planar network. IMRN
**2008**(2008), Article ID rnn081. https://doi.org/10.1093/imrn/rnn081 - 70.Viro, O.Y.: Real plane algebraic curves: constructions with controlled topology. Leningrad Math. J.
**1**(5), 1059–1134 (1990)MathSciNetzbMATHGoogle Scholar - 71.Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I. Funct. Anal. Appl.
**8**(3), 226–235 (1974)zbMATHGoogle Scholar - 72.Zarmi, Y.: Vertex dynamics in multi-soliton solutions of Kadomtsev–Petviashvili II equation. Nonlinearity
**27**, 1499–1523 (2014)MathSciNetzbMATHGoogle Scholar