Advertisement

Selecta Mathematica

, 25:25 | Cite as

Affine Grassmannians in \(\mathbb A^1\)-homotopy theory

  • Tom BachmannEmail author
Article
  • 18 Downloads

Abstract

Let k be a field. Denote by \(\mathcal {S}\mathrm {pc}{}(k)_*\) the unstable, pointed motivic homotopy category and by \(R^{\mathbb A^1} \Omega _{\mathbb {G}_m}: \mathcal {S}\mathrm {pc}{}(k)_*\rightarrow \mathcal {S}\mathrm {pc}{}(k)_*\) the (\(\mathbb A^1\)-derived) \({\mathbb {G}_m}\)-loops functor. For a k-group G, denote by \(\mathrm {Gr}_{G}\) the affine Grassmannian of G. If G is isotropic reductive, we provide a canonical motivic equivalence \(R^{\mathbb A^1} \Omega _{\mathbb {G}_m}G \simeq \mathrm {Gr}_{G}\). We use this to compute the motive \(M(R^{\mathbb A^1} \Omega _{\mathbb {G}_m}G) \in \mathcal {DM}(k, \mathbb {Z}[1/e])\).

Mathematics Subject Classification

14F42 14D24 

Notes

Acknowledgements

I would like to thank Timo Richarz for patiently explaining many basic facts about affine Grassmannians, and in particular for explaining to me Lemma 13. I would also like to thank Maria Yakerson for comments on a draft, and Marc Hoyois for an enlightening discussion about the Grothendieck–Serre conjecture and the ldh topology. Finally I would like to thank an anonymous referee for suggesting a simplified exposition of Sect. 2.

References

  1. 1.
    Asok, A., Hoyois, M., Wendt, M.: Affine representability results in \({\mathbb{A}}^{1}\) -homotopy theory, I: Vector bundles. Duke Math. J. 166(10), 1923–1953 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Asok, A., Hoyois, M., Wendt, M.: Affine representability results in \(\mathbb{A}^1\)-homotopy theory, II: principal bundles and homogeneous spaces. Geometry Topol. 22(2), 1181–1225 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Asok, A., Hoyois, M., Wendt, M.: Affine representability results in \(\mathbb{A}^1\)-homotopy theory III: finite fields and complements. arXiv preprint arXiv:1807.03365 (2018)
  4. 4.
    Beauville, A., Laszlo, Y.: Un lemme de descente. Comptes Rendus de l’Academie des Sciences-Serie I-Mathematique 320(3), 335–340 (1995)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Fedorov, R.: On the Grothendieck–Serre conjecture on principal bundles in mixed characteristic. arXiv preprint arXiv:1501.04224 (2015)
  6. 6.
    Fedorov, R., Panin, I.: A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields. Publications mathématiques de l’IHÉS 122(1), 169–193 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Haines, T.J., Richarz, T.: The test function conjecture for parahoric local models. arXiv:1801.07094 (2018)
  8. 8.
    Kelly, S.: Voevodsky motives and \(l\)dh descent. Astérisque 391 (2017)Google Scholar
  9. 9.
    Lurie, J.: Higher topos theory, vol. 170. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  10. 10.
    Morel, F., Voevodsky, V.: \(\mathbb{A}^1\)-homotopy theory of schemes. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 90(1), 45–143 (1999)CrossRefGoogle Scholar
  11. 11.
    Panin, I.: Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field. arXiv preprint arXiv:1707.01767 (2017)
  12. 12.
    Pannekoek, R.: Rational points on open subsets of affine space. MathOverflow. https://mathoverflow.net/q/264212 (version: 2017-03-09)
  13. 13.
    Pressley, A., Segal, G.: Loop Groups. D. Reidel Publishing Co., Dordrech (1984)zbMATHGoogle Scholar
  14. 14.
    The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu (2018)
  15. 15.
    Voevodsky, V.: Triangulated categories of motives over a field. In: Cycles, Transfers, and Motivic Homology Theories, vol. 143, pp. 188–238 (2000)Google Scholar
  16. 16.
    Voevodsky, V.: Unstable motivic homotopy categories in Nisnevich and cdh-topologies. J. Pure Appl. Algebra 214(8), 1399–1406 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhu, X.: An introduction to affine Grassmannians and the geometric Satake equivalence. arXiv preprint arXiv:1603.05593 (2016)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations