Selecta Mathematica

, Volume 24, Issue 5, pp 4223–4277 | Cite as

Generalized Springer theory for D-modules on a reductive Lie algebra

  • Sam Gunningham


Given a reductive group G, we give a description of the abelian category of G-equivariant D-modules on \(\mathfrak {g}={{\mathrm{Lie}}}(G)\), which specializes to Lusztig’s generalized Springer correspondence upon restriction to the nilpotent cone. More precisely, the category has an orthogonal decomposition in to blocks indexed by cuspidal data \((L,\mathcal {E})\), consisting of a Levi subgroup L, and a cuspidal local system \(\mathcal {E}\) on a nilpotent L-orbit. Each block is equivalent to the category of D-modules on the center \(\mathfrak {z}(\mathfrak {l})\) of \(\mathfrak {l}\) which are equivariant for the action of the relative Weyl group \(N_G(L)/L\). The proof involves developing a theory of parabolic induction and restriction functors, and studying the corresponding monads acting on categories of cuspidal objects. It is hoped that the same techniques will be fruitful in understanding similar questions in the group, elliptic, mirabolic, quantum, and modular settings.


D-modules Geometric representation theory Springer theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Much of this paper was written while I was a postdoc at MSRI, and I would like to thank them for their hospitality. This work (which arose from my PhD thesis) has benefited greatly from numerous conversations with various people over the last few years. The following is a brief and incomplete list of such individuals whom I would especially like to thank, with apologies to those who are omitted. P. Achar, G. Bellamy, D. Ben-Zvi, D. Fratila, D. Gaitsgory, D. Jordan, D. Juteau, P. Li, C. Mautner, D. Nadler, L. Rider, T. Schedler. I am particularly grateful to an anonymous referee for their comments and suggestions on an earlier draft.


  1. 1.
    Achar, P.N.: Green functions via hyperbolic localization. Doc. Math. 16, 869–884 (2011)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alekseev, A.Y.: Integrability in Hamiltonian Chern–Simons theory. arXiv:hep-th/9311074 (1993)
  3. 3.
    Atiyah, M.F.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc. 7, 414–452 (1957)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Backelin, E., Kremnizer, K.: Quantum flag varieties, equivariant quantum \(\cal{D}\)-modules, and localization of quantum groups. Adv. Math. 203(2), 408–429 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baranovsky, V., Ginzburg, V.: Conjugacy classes in loop groups and \(G\)-bundles on elliptic curves. Int. Math. Res. Not. 15, 733–751 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Baranovsky, V., Evens, S., Ginzburg, V.: Representations of quantum tori and G-bundles on elliptic curves. Orbit Method Geom. Phys. 213, 29–48 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Barr, M., Wells, C.: Toposes, Triples and Theories, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 278. Springer, New York (1985)Google Scholar
  8. 8.
    Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s Integrable System and Hecke Eigensheaves (preliminary version), Preprint. (1991).
  9. 9.
    Bellamy, G., Ginzburg, V.: Hamiltonian reduction and nearby cycles for mirabolic D-modules. Adv. Math. 269, 71–161 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ben Zvi, D., Brochier, A., Jordan, D.: Integrating quantum groups over surfaces. J. Topol. (2018). MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ben-Zvi, D., Brochier, A., Jordan, D.: Quantum character varieties and braided module categories. Sel. Math. New Ser. (2018).
  12. 12.
    Ben-Zvi, D., Gunningham, S., Nadler, D.: The character field theory and homology of character varieties. arXiv:1705.04266 (2017)
  13. 13.
    Ben-Zvi, D., Nadler, D.: The character theory of a complex group. arXiv:0904.1247 (2009)
  14. 14.
    Ben-Zvi, D., Nadler, D.: Elliptic Springer theory. Compos. Math. 151(8), 1568–1584 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bernstein, J., Lunts, V.: Equivariant Sheaves and Functors. Lecture Notes in Mathematics, vol. 1578. Springer, Berlin (1994)CrossRefGoogle Scholar
  16. 16.
    Borel, A., Tits, J.: Groupes réductifs. Inst. Hautes Études Sci. Publ. Math. 27, 55–150 (1965)CrossRefGoogle Scholar
  17. 17.
    Borho, W., MacPherson, R.: Partial resolutions of nilpotent varieties, analysis and topology on singular spaces, II, III (Luminy, 1981). Astrisque 101, 23–74 (1983)Google Scholar
  18. 18.
    Braden, T.: Hyperbolic localization of intersection cohomology. Transform. Groups 8(3), 209–216 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cautis, S., Kamnitzer, J.: Quantum K-theoretic geometric Satake. arXiv:1509.00112 (2015)
  20. 20.
    Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhuser Boston Inc., Boston (1997)zbMATHGoogle Scholar
  21. 21.
    Drinfeld, V., Gaitsgory, D.: On some finiteness questions for algebraic stacks. Geom. Funct. Anal. 23(1), 149–294 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Drinfeld, V., Gaitsgory, D.: On a theorem of Braden. Transform. Groups 19(2), 313–358 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Etingof, P., Ginzburg, V.: Symplectic reflection algebras. Calogero–Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147(2), 243–348 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Finkelberg, M., Ginzburg, V.: On mirabolic D-modules. Int. Math. Res. Not. 2010(15), 2947–2986 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Franjou, V., Pirashvili, T.: Comparison of abelian categories recollements. Doc. Math. 9, 41–56 (2004)Google Scholar
  26. 26.
    Fratila, D.: On the stack of semistable \(G\)-bundles over an elliptic curve. Math. Ann. 365(1–2), 401–421 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Friedman, R., Morgan, J.W., Witten, E.: Principal \(G\)-bundles over elliptic curves. Math. Res. Lett. 5(1–2), 97–118 (1998)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Gabber, O.: The integrability of the characteristic variety. Am. J. Math. 103(3), 445–468 (1981)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gaitsgory, D., Rozenblyum, N.: Crystals and D-modules. arXiv:1111.2087 (2011)
  30. 30.
    Gaitsgory, D., Rozenblyum, N.: A study in derived algebraic geometry: Volume I: correspondences and duality, vol. 221. American Mathematical Society, Providence (2017)Google Scholar
  31. 31.
    Gan, W.L., Ginzburg, V.: Almost-commuting variety, D-modules, and Cherednik algebras. IMRP. Int. Math. Res. Papers 26439, 1–54 (2006)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Ginsburg, V.: Admissible modules on a symmetric space. Astrisque 173–174, 199–255 (1989)zbMATHGoogle Scholar
  33. 33.
    Ginzburg, V.: Induction and restriction of character sheaves. Adv. Sov. Math. 16, 149–167 (1993)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Ginzburg, V.: Lectures on D-modules. Online lecture notes. Sabin Cautis webpage, With collaboration of Baranovsky, V. and Evens, S (1998)
  35. 35.
    Gunningham, S.: A derived decomposition for equivariant \(D\)-modules. arXiv: 1705.04297v3 (2017)
  36. 36.
    Harish-Chandra, : Invariant differential operators and distributions on a semisimple Lie Algebra. Am. J. Math. 86(3), 534–564 (1964)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Hausel, T., Rodriguez-Villegas, F.: Mixed Hodge polynomials of character varieties. Invent. Math. 174(3), 555–624 (2008)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Arithmetic harmonic analysis on character and quiver varieties. Duke Math. J. 160(2), 323–400 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Hotta, R., Kashiwara, M.: The invariant holonomic system on a semisimple Lie algebra. Invent. Math. 75(2), 327–358 (1984)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Hotta, R., Takeuchi, K., Tanisaki, T.: D-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236. Birkhuser Boston Inc., Boston (2008)CrossRefGoogle Scholar
  41. 41.
    Jordan, D., D-modules, Q.: elliptic braid groups, and double affine hecke algebras. Int. Math. Res. Not. 2009(11), 2081–2105 (2009)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Kashiwara, M.: D-modules and microlocal calculus, vol. 254. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  43. 43.
    Kazhdan, D., Lusztig, G.: A topological approach to Springer’s representations. Adv. Math. 38(2), 222–228 (1980)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Levasseur, T., Stafford, J.T.: Invariant differential operators and an homomorphism of Harish-Chandra. J. Am. Math. Soc. 8(2), 365–372 (1995)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Levasseur, T., Stafford, J.T.: The kernel of an homomorphism of Harish-Chandra. Annales Scientifiques de l’École Normale Supérieure. Quatrième Série 29(3), 385–397 (1996)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Li, P., Nadler, D.: Uniformization of semistable bundles on elliptic curves. arXiv:1510.08762 [math] (2015)
  47. 47.
    Lurie, J.: Stable infinity categories. arXiv:math/0608228 (2006)
  48. 48.
    Lurie, J.: Higher Algebra (2017).
  49. 49.
    Lusztig, G.: Coxeter orbits and eigenspaces of frobenius. Invent. Math. 38(2), 101–159 (1976)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Lusztig, G.: Intersection cohomology complexes on a reductive group. Invent. Math. 75(2), 205–272 (1984)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Lusztig, G.: Character sheaves I. Adv. Math. 56(3), 193–237 (1985)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Lusztig, G.: Character sheaves. V. Adv. Math. 61(2), 103–155 (1986)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Lusztig, G.: Cuspidal local systems and graded Hecke algebras. II, Representations of groups (Banff, AB, 1994). CMS conference proceedings American Mathematical Society, Providence, RI, vol. 16, pp. 217–75 (1995)Google Scholar
  54. 54.
    McGerty, K., Nevins, T.: Morse decomposition for D-module categories on stacks. arXiv: 1402.7365 (2014)
  55. 55.
    Mirković, I.: Character sheaves on reductive Lie algebras. Mosc. Math. J. 4(4), 897–910, 981 (2004)Google Scholar
  56. 56.
    Popescu, N.: Abelian categories with applications to rings and modules, vol. 3. Academic Press London, London (1973)zbMATHGoogle Scholar
  57. 57.
    Premet, A.: Nilpotent commuting varieties of reductive Lie algebras. Invent. Math. 154(3), 653–683 (2003)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Rider, L.: Formality for the nilpotent cone and a derived Springer correspondence. Adv. Math. 235, 208–236 (2013)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Rider, L., Russell, A.: Perverse sheaves on the nilpotent cone and Lusztig’s generalized Springer correspondence. Lie algebras, Lie superalgebras, vertex algebras and related topics. Proceedings Symposium Pure Mathematics, vol. 92, pp. 273–292. American Mathematical Society, Providence (2016)Google Scholar
  60. 60.
    Semenov-Tian-Shansky, M.A.: Poisson Lie groups, quantum duality principle, and the quantum double. Contemp. Math. 175, 219–248 (1994)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Sommers, E.: A generalization of the Bala-Carter theorem for nilpotent orbits. Int. Math. Res. Not. 1998(11), 539–562 (1998)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Springer, T.A.: A construction of representations of Weyl groups. Invent. Math. 44(3), 279–293 (1978)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Toën, B., Vezzosi, G.: Homotopical algebraic geometry. II. Geometric stacks and applications. Mem. Am. Math. Soc. 193(902), 224 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TexasAustinUSA
  2. 2.School of MathematicsUniversity of EdinburghEdinburghUK

Personalised recommendations