Skip to main content
Log in

Stable Big Bang formation in near-FLRW solutions to the Einstein-scalar field and Einstein-stiff fluid systems

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove a stable blowup result for solutions to the Einstein-scalar field and Einstein-stiff fluid systems. Our result applies to small perturbations of the spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) solution with topology \((0,\infty ) \times \mathbb {T}^3\). The FLRW solution models a spatially uniform scalar-field/stiff fluid evolving in a spacetime that expands towards the future and that has a “Big Bang” singularity at \(\lbrace 0 \rbrace \times \mathbb {T}^3\), where various curvature invariants blow up. We place “initial” data on a Cauchy hypersurface \(\Sigma _1'\) that are close, as measured by a Sobolev norm, to the FLRW data induced on \(\lbrace 1 \rbrace \times \mathbb {T}^3\). We then study the asymptotic behavior of the perturbed solution in the collapsing direction and prove that its basic qualitative and quantitative features closely resemble those of the FLRW solution. In particular, for the perturbed solution, we construct constant mean curvature-transported spatial coordinates covering \((t,x) \in (0,1] \times \mathbb {T}^3\) and show that it also has a Big Bang at \(\lbrace 0 \rbrace \times \mathbb {T}^3\), where its curvature blows up. The blowup confirms Penrose’s Strong Cosmic Censorship hypothesis for the “past-half” of near-FLRW solutions. Furthermore, we show that the equations are dominated by kinetic (that is, time-derivative-involving) terms that induce approximately monotonic behavior near the Big Bang. As a consequence of the monotonicity, we also show that various time-rescaled components of the solution converge to regular functions of x as \(t \downarrow 0\). The most difficult aspect of the proof is showing that the solution exists for \((t,x) \in (0,1] \times \mathbb {T}^3\), and to this end, we derive a hierarchy of energy estimates that allow for the possibility of mild energy blowup as \(t \downarrow 0\). To close these estimates, it is essential that we are able to rule out more singular energy blowup, a step that is in turn tied to the most important ingredient in our analysis: a collection of integral identities that, when combined in the right proportions, yield an \(L^2\)-type approximate monotonicity inequality, a key point being that the error terms are controllable up to the singularity for near-FLRW solutions. In a companion article, we derived similar approximate monotonicity inequalities for linearized versions of the Einstein-scalar field equations and used them to prove linear stability results for a family of spatially homogeneous background solutions. The present article shows that the linear stability of the FLRW background solution can be upgraded to a full proof of the nonlinear stability of its singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Moncrief, V.: Elliptic-hyperbolic systems and the Einstein equations. Ann. Henri Poincaré 4(1), 1–34 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersson, L., Moncrief, V.: Future complete vacuum spacetimes. In: The Einstein Equations and the Large Scale Behavior of Gravitational Fields, pp. 299–330 (2004)

    Chapter  Google Scholar 

  3. Andersson, L., Rendall, A.D.: Quiescent cosmological singularities. Commun. Math. Phys. 218(3), 479–511 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anguige, K., Tod, K.P.: Isotropic cosmological singularities. I. Polytropic perfect fluid spacetimes. Ann. Phys. 276(2), 257–293 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anguige, K.: A class of plane symmetric perfect-fluid cosmologies with a Kasner-like singularity. Class. Quantum Gravity 17(10), 2117–2128 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balakrishna, J., Daues, G., Seidel, E., Suen, W.M., Tobias, M., Wang, E.: Coordinate conditions in three-dimensional numerical relativity. Class. Quantum Gravity 13(12), L135–L142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baouendi, M.S., Goulaouic, C.: Remarks on the abstract form of nonlinear Cauchy–Kovalevsky theorems. Commun. Partial Differ. Equ. 2(11), 1151–1162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barrow, J.D.: Quiescent cosmology. Nature 272, 211–215 (1978)

    Article  Google Scholar 

  9. Bartnik, R.: Existence of maximal surfaces in asymptotically flat spacetimes. Commun. Math. Phys. 94(2), 155–175 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bartnik, R.: Remarks on cosmological spacetimes and constant mean curvature surfaces. Commun. Math. Phys. 117(4), 615–624 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Belinskiĭ, V.A., Khalatnikov, I.M.: Effect of scalar and vector fields on the nature of the cosmological singularity. Ž. Èksper. Teoret. Fiz. 63, 1121–1134 (1972)

    Google Scholar 

  12. Beyer, F., LeFloch, P.G.: Second-order hyperbolic Fuchsian systems and applications. Class. Quantum Gravity 27(24), 245012 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bieri, L., Zipser, N. (eds.): Extensions of the Stability Theorem of the Minkowski Space in General Relativity. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  14. Choquet-Bruhat, Y., Isenberg, J., Moncrief, V.: Topologically general U(1) symmetric vacuum space-times with AVTD behavior. Nuovo Cimento Soc. Ital. Fis. B 119(7–9), 625–638 (2004)

    MathSciNet  Google Scholar 

  15. Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Choquet-Bruhat, Y.F.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  17. Christodoulou, D.: The Action Principle and Partial Differential Equations, Annals of Mathematics Studies, vol. 146. Princeton University Press, Princeton (2000)

    Google Scholar 

  18. Christodoulou, D.: The Formation of Shocks in 3-Dimensional Fluids, European Mathematical Society (EMS), EMS Monographs in Mathematics, Zürich (2007)

  19. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, vol. 41. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  20. Chruściel, P.T., Galloway, G.J., Pollack, D.: Mathematical general relativity: a sampler. Bull. Am. Math. Soc. (N.S.) 47(4), 567–638 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chruściel, P.T., Isenberg, J.: Nonisometric vacuum extensions of vacuum maximal globally hyperbolic spacetimes. Phys. Rev. D (3) 48(4), 1616–1628 (1993)

    Article  MathSciNet  Google Scholar 

  22. Claudel, C.M., Newman, K.P.: The Cauchy problem for quasi-linear hyperbolic evolution problems with a singularity in the time. Proc. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1972), 1073–1107 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Damour, T., Henneaux, M., Rendall, A.D., Weaver, M.: Kasner-like behaviour for subcritical Einstein-matter systems. Ann. Henri Poincaré 3(6), 1049–1111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Eardley, D., Liang, E., Sachs, R.: Velocity-dominated singularities in irrotational dust cosmologies. J. Math. Phys. 13, 99–106 (1972)

    Article  Google Scholar 

  25. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  26. Fischer, A.E., Moncrief, V.: Hamiltonian reduction of Einstein’s equations of general relativity. Nuclear Phys. B Proc. Suppl. 57, 142–161 (1997). Constrained dynamics and quantum gravity 1996 (Santa Margherita Ligure)

  27. Fischer, A.E., Moncrief, V.: Reducing Einstein’s equations to an unconstrained Hamiltonian system on the cotangent bundle of Teichmüller space. In: Physics on Manifolds (Paris, 1992), pp. 111–151 (1994)

  28. Fischer, A.E., Moncrief, V.: Hamiltonian reduction of Einstein’s equations and the geometrization of three-manifolds. In: International Conference on Differential Equations, vols. 1, 2 (Berlin, 1999), pp. 279–282 (2000)

    Chapter  Google Scholar 

  29. Fischer, A.E., Moncrief, V.: The reduced Hamiltonian of general relativity and the \(\sigma \)-constant of conformal geometry. In: Mathematical and Quantum Aspects of Relativity and Cosmology (Pythagoreon, 1998), pp. 70–101 (2000)

  30. Fischer, A.E., Moncrief, V.: The reduced Einstein equations and the conformal volume collapse of 3-manifolds. Class. Quantum Gravity 18(21), 4493–4515 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fischer, A.E., Moncrief, V.: Hamiltonian reduction and perturbations of continuously self-similar \((n+1)\)-dimensional Einstein vacuum spacetimes. Class. Quantum Gravity 19(21), 5557–5589 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Friedmann, A.: On the curvature of space. Gen. Relativ. Gravity 31(12), 1991–2000 (1999). Translated from the 1922 German original

    Article  MathSciNet  MATH  Google Scholar 

  33. Friedrich, H.: The conformal structure of Einstein’s field equations. In: Conformal Groups and Related Symmetries: Physical Results and Mathematical Background (Clausthal-Zellerfeld, 1985), pp. 152–161 (1986)

  34. Friedrich, H.: On the existence of \(n\)-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107(4), 587–609 (1986)

    MathSciNet  MATH  Google Scholar 

  35. Friedrich, H.: On the global existence and the asymptotic behavior of solutions to the Einstein–Maxwell–Yang–Mills equations. J. Differ. Geom. 34(2), 275–345 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Friedrich, H.: Conformal Einstein evolution. In: The Conformal Structure of Space-Time, pp. 1–50 (2002)

    Google Scholar 

  37. Friedrich, H.: Sharp asymptotics for Einstein-\(\lambda \)-dust flows. Commun. Math. Phys. 350(2), 803–844 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Friedrich, H., Rendall, A.: The Cauchy problem for the Einstein equations. In: Einstein’s Field Equations and Their Physical Implications, pp. 127–223 (2000)

    Chapter  Google Scholar 

  39. Garfinkle, D., Gundlach, C.: Well-posedness of the scale-invariant tetrad formulation of the vacuum Einstein equations. Class. Quantum Gravity 22, 2679–2686 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gerhardt, C.: \(H\)-surfaces in Lorentzian manifolds. Commun. Math. Phys. 89(4), 523–553 (1983)

    MathSciNet  MATH  Google Scholar 

  41. Griffiths, J., Podolskỳ, J.: Exact Space-Times in Einstein’s General Relativity, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  42. Gundlach, C., Martín-García, J.M.: Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions. Phys. Rev. D 74, 024016 (2006)

    Article  Google Scholar 

  43. Guo, Y.: Smooth irrotational flows in the large to the Euler–Poisson system in \( {R}^{3+1}\). Commun. Math. Phys. 195(2), 249–265 (1998)

    MATH  Google Scholar 

  44. Hawking, S.W.: The occurrence of singularities in cosmology. III. causality and singularities. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 300(1461), 187–201 (1967)

    Article  MATH  Google Scholar 

  45. Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. Ser. A 314, 529–548 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  46. Isenberg, J., Kichenassamy, S.: Asymptotic behavior in polarized \(T^2\)-symmetric vacuum space-times. J. Math. Phys. 40(1), 340–352 (1999)

    MathSciNet  MATH  Google Scholar 

  47. Isenberg, J., Moncrief, V.: Asymptotic behavior of the gravitational field and the nature of singularities in Gowdy spacetimes. Ann. Phys. 199(1), 84–122 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kasner, E.: Geometrical theorems on Einstein’s cosmological equations. Gen. Relativ. Gravit. 40(4), 865–876 (2008). Reprinted from Am. J. Math. 43 (1921), 217–221, With an editorial comment by John Wainwright and a biography of Kasner compiled by Andrzej Krasiński

  49. Kichenassamy, S.: The blow-up problem for exponential nonlinearities. Commun. Partial Differ. Equ. 21(1–2), 125–162 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kichenassamy, S.: Fuchsian equations in Sobolev spaces and blow-up. J. Differ. Equ. 125(1), 299–327 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kichenassamy, S.: Nonlinear Wave Equations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 194. Marcel Dekker Inc., New York (1996)

    Google Scholar 

  52. Kichenassamy, S., Rendall, A.D.: Analytic description of singularities in Gowdy spacetimes. Class. Quantum Gravity 15(5), 1339–1355 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Klainerman, S., Rodnianski, I.: On the breakdown criterion in general relativity. J. Am. Math. Soc. 23(2), 345–382 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Lemaître, A.G.: Contributions to a British Association Discussion on the Evolution of the Universe. Nature 128, 704–706 (1931)

    Article  Google Scholar 

  55. Lindblad, H., Rodnianski, I.: Global existence for the Einstein vacuum equations in wave coordinates. Commun. Math. Phys. 256(1), 43–110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lindblad, H., Rodnianski, I.: The global stability of Minkowski space-time in harmonic gauge. Ann. Math. 171(3), 1401–1477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lloyd, N.G.: Degree Theory. Cambridge University Press, Cambridge (1978). Cambridge Tracts in Mathematics, No. 73

  58. Loizelet, J.: Solutions globales des équations d’Einstein–Maxwell. Ann. Fac. Sci. Toulouse Math. (6) 18(3), 565–610 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Lübbe, C., Valiente Kroon, J.A.: A conformal approach for the analysis of the non-linear stability of radiation cosmologies. Ann. Phys. 328, 1–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Misner, C.W.: Mixmaster universe. Phys. Rev. Lett. 22, 1071–1074 (1969)

    Article  MATH  Google Scholar 

  61. Newman, R.P.A.C.: On the structure of conformal singularities in classical general relativity. Proc. R. Soc. Lond. Ser. A 443(1919), 473–492 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  62. Newman, R.P.A.C.: On the structure of conformal singularities in classical general relativity. II. Evolution equations and a conjecture of K. P. Tod. Proc. R. Soc. Lond. Ser. A 443(1919), 493–515 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  63. Oliynyk, T.A.: Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant. Commun. Math. Phys. 346(1), 293–312 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. Penrose, R.: Gravitational collapse: the role of general relativity. Gen. Relativ. Gravity 34(7), 1141–1165. Reprinted from Rivista del Nuovo Cimento 1969, Numero Speziale I, 252–276 (2002)

  65. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  66. Penrose, R.: Singularities and time-asymmetry. In: General Relativity: An Einstein Centenary Survey, pp. 581–638 (1979)

  67. Reiris, M.: On the asymptotic spectrum of the reduced volume in cosmological solutions of the Einstein equations. Gen. Relativ. Gravity 41(5), 1083–1106 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Rendall, A.D.: Fuchsian analysis of singularities in Gowdy spacetimes beyond analyticity. Class. Quantum Gravity 17(16), 3305–3316 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  69. Rendall, A.D.: Theorems on existence and global dynamics for the Einstein equations. Living Rev. Relativ. 8, 6 (2005)

    Article  MATH  Google Scholar 

  70. Ringström, H.: Curvature blow up in Bianchi VIII and IX vacuum spacetimes. Class. Quantum Gravity 17(4), 713–731 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ringström, H.: The Bianchi IX attractor. Ann. Henri Poincaré 2(3), 405–500 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  72. Ringström, H.: Future stability of the Einstein-non-linear scalar field system. Invent. Math. 173(1), 123–208 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. Ringström, H.: Power law inflation. Commun. Math. Phys. 290(1), 155–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  74. Rodnianski, I., Speck, J.: The nonlinear future stability of the FLRW family of solutions to the irrotational Euler–Einstein system with a positive cosmological constant. J. Eur. Math. Soc. (JEMS) 15(6), 2369–2462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  75. Rodnianski, I., Speck, J.: A regime of linear stability for the Einstein-scalar field system with applications to nonlinear Big Bang formation. Ann. Math. (2) 187(1), 65–156 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  76. Shao, A.: Breakdown criteria for nonvacuum Einstein equations (2010). (English) 2066657291; Shao, Arick; 520417454; Copyright ProQuest, UMI Dissertations Publishing 2010; 9781124046952; 2010; 3410986; 66569; 50824791; English; M1: Ph.D.; M3: 3410986

  77. Shao, A.: On breakdown criteria for nonvacuum Einstein equations. Ann. Henri Poincaré 12(2), 205–277 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  78. Sideris, T.C.: Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys. 101(4), 475–485 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  79. Speck, J.: The non-relativistic limit of the Euler–Nordström system with cosmological constant. Rev. Math. Phys. 21(7), 821–876 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  80. Speck, J.: Well-posedness for the Euler–Nordström system with cosmological constant. J. Hyperbolic Differ. Equ. 6(2), 313–358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  81. Speck, J.: The nonlinear future stability of the FLRW family of solutions to the Euler–Einstein system with a positive cosmological constant. Sel. Math. 18(3), 633–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  82. Speck, J.: The stabilizing effect of spacetime expansion on relativistic fluids with sharp results for the radiation equation of state. Arch. Ration. Mech. Anal. 210(2), 535–579 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  83. Speck, J.: The global stability of the Minkowski spacetime solution to the Einstein-nonlinear system in wave coordinates. Anal. PDE 7(4), 771–901 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  84. Speck, J., Strain, R.M.: Hilbert expansion from the Boltzmann equation to relativistic fluids. Commun. Math. Phys. 304(1), 229–280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  85. Ståhl, F.: Fuchsian analysis of \(S^2\times S^1\) and \(S^3\) Gowdy spacetimes. Class. Quantum Gravity 19(17), 4483–4504 (2002)

    MathSciNet  Google Scholar 

  86. Strauss, W.A.: Nonlinear wave equations, CBMS Regional Conference Series in Mathematics, vol. 73. Published for the Conference Board of the Mathematical Sciences, Washington (1989)

  87. Taylor, M.E.: Partial Differential Equations. III, Applied Mathematical Sciences, vol. 117. Springer, New York (1997). Nonlinear Equations, Corrected reprint of the 1996 original

  88. Tod, K.P.: Isotropic singularities and the \(\gamma =2\) equation of state. Class. Quantum Gravity 7(1), L13–L16 (1990)

    MathSciNet  MATH  Google Scholar 

  89. Tod, K.P.: Isotropic singularities and the polytropic equation of state. Class. Quantum Gravity 8(4), L77–L82 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  90. Tod, K.P.: Isotropic cosmological singularities. In: The Conformal Structure of Space-Time, pp. 123–134 (2002)

  91. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  92. Wang, Q.: Improved breakdown criterion for Einstein vacuum equations in CMC gauge. Commun. Pure Appl. Math. 65(1), 21–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Mihalis Dafermos for offering enlightening comments that helped them improve the exposition. They also thank David Jerison for providing insights that aided their proof of Proposition 14.4. Finally, they thank the anonymous referee for their careful reading of the manuscript and for providing helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared Speck.

Additional information

IR gratefully acknowledges support from NSF Grant # DMS-1001500. JS gratefully acknowledges support from NSF Grant # DMS-1162211 and from a Solomon Buchsbaum grant administered by the Massachusetts Institute of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodnianski, I., Speck, J. Stable Big Bang formation in near-FLRW solutions to the Einstein-scalar field and Einstein-stiff fluid systems. Sel. Math. New Ser. 24, 4293–4459 (2018). https://doi.org/10.1007/s00029-018-0437-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0437-8

Keywords

Mathematics Subject Classification

Navigation