Skip to main content
Log in

Cluster realization of \(\mathcal {U}_q(\mathfrak {g})\) and factorizations of the universal R-matrix

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

For each simple Lie algebra \(\mathfrak {g}\), we construct an algebra embedding of the quantum group \(\mathcal {U}_q(\mathfrak {g})\) into certain quantum torus algebra \(\mathcal {D}_\mathfrak {g}\) via the positive representations of split real quantum group. The quivers corresponding to \(\mathcal {D}_\mathfrak {g}\) is obtained from an amalgamation of two basic quivers, each of which is mutation equivalent to one describing the cluster structure of the moduli space of framed G-local system on a disk with 3 marked points on its boundary when G is of classical type. We derive a factorization of the universal R-matrix into quantum dilogarithms of cluster monomials, and show that conjugation by the R-matrix corresponds to a sequence of quiver mutations which produces the half-Dehn twist rotating one puncture about the other in a twice punctured disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Berenstein, A.: Group-like elements in quantum groups and Feigin’s conjecture. arXiv:q-alg/9605016 (1996)

  2. Berenstein, A., Zelevinsky, A.: Quantum cluster algebras. Adv. Math. 195(2), 405–455 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bytsko, A.G., Teschner, J.: R-operator, co-product and Haar-measure for the modular double of \(\cal{U}_q({\mathfrak{sl}}(2,{\mathbb{R}}))\). Commun. Math. Phys. 240, 171–196 (2003)

    Article  Google Scholar 

  4. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  5. Drinfeld, V.G.: Hopf algebras and the quantum Yang–Baxter equation. Dokl. Akad. Nauk SSSR 283(5), 1060–1064 (1985)

    MathSciNet  Google Scholar 

  6. Faddeev, L.D.: Modular double of quantum group. arXiv:math/9912078v1 [math.QA] (1999)

  7. Faddeev, L.D.: Discrete Heisenberg–Weyl group and modular group. Lett. Math. Phys. 34, 249–254 (1995)

    Article  MathSciNet  Google Scholar 

  8. Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm. Mod. Phys. Lett. A 9, 427–434 (1994)

    Article  MathSciNet  Google Scholar 

  9. Fock, V., Goncharov, A.: Cluster \(\cal{X}\)-varieties, amalgamation, and Poisson-Lie groups. In: Ginzburg, V. (ed.) Algebraic Geometry and Number Theory, pp. 27–68. Birkhäuser, Boston (2006)

    Chapter  Google Scholar 

  10. Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. l’IHÉS 103, 1–211 (2006)

    Article  Google Scholar 

  11. Frenkel, I., Ip, I.: Positive representations of split real quantum groups and future perspectives. Int. Math. Res. Not. 2014(8), 2126–2164 (2014)

    Article  MathSciNet  Google Scholar 

  12. Gautam, S.: Cluster algebras and Grassmannians of type \(G_2\). Algebras Represent. Theory 13, 335–357 (2010)

    Article  MathSciNet  Google Scholar 

  13. Geiss, C., Leclerc, B., Schröer, J.: Cluster structures on quantum coordinate rings. Sel. Math. 19(2), 337–397 (2013)

    Article  MathSciNet  Google Scholar 

  14. Gerasimov, A., Kharchev, S., Lebedev, D.: Representation theory and quantum integrability. Progr. Math. 237, 133–156 (2005)

    Article  MathSciNet  Google Scholar 

  15. Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a class of representations of quantum groups. Contemp. Math. 391, 101–110 (2005)

    Article  MathSciNet  Google Scholar 

  16. Goodearl, K., Yakimov, M.: Quantum cluster algebras and quantum nilpotent algebras. Proc. Natl. Acad. Sci. 111(27), 9696–9703 (2014)

    Article  MathSciNet  Google Scholar 

  17. Hikami, K., Inoue, R.: Braiding operator via quantum cluster algebra. J. Phys. A Math. Theor. 47(47), 474006 (2014)

    Article  MathSciNet  Google Scholar 

  18. Iohara, K., Malikov, F.: Rings of skew polynomials and Gelfand–Kirillov conjecture for quantum groups. Commun. Math. Phys. 164(2), 217–237 (1994)

    Article  MathSciNet  Google Scholar 

  19. Ip, I.: Cluster realization of positive representations of split real quantum Borel subalgebra. arXiv:1712.00013 (2017)

  20. Ip, I.: Positive representations and harmonic analysis of split real quantum groups. Ph.D. thesis, Yale University (2012)

  21. Ip, I.: Positive representations of split real simply-laced quantum groups. arXiv:1203.2018 (2012)

  22. Ip, I.: Positive representations of split real non-simply-laced quantum groups. J. Algebra 425(2015), 245–276 (2015)

    Article  MathSciNet  Google Scholar 

  23. Ip, I.: Positive representations of split real quantum groups: the universal \(R\) operator. Int. Math. Res. Not. 2015(1), 240–287 (2015)

    Article  MathSciNet  Google Scholar 

  24. Ip, I.: Gauss–Lusztig decomposition of \(GL_q^+(N,{\mathbb{R}})\) and representations by \(q\)-tori. J. Pure Appl. Algebra 219(12), 5650–5672 (2015)

    Article  MathSciNet  Google Scholar 

  25. Ip, I.: Positive Casimir and central characters of split real quantum groups. Commun. Math. Phys. 344(3), 857–888 (2016)

    Article  MathSciNet  Google Scholar 

  26. Ip, I.: Positive representations, multiplier Hopf algebra, and continuous canonical basis, “String theory, integrable systems and representation theory”. RIMS Kokyuroku Bessatsu Ser. B 62, 71–86 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Jimbo, M.: A \(q\)-difference analogue of \({\cal{U}}({\mathfrak{g}})\) and the Yang–Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  MathSciNet  Google Scholar 

  28. Kashaev, R.: The quantum dilogarithm and Dehn twists in quantum Teichmüller theory. In: Kirillov, A.N., Liskova, N. (eds.) Physics and Combinatorics (2000, Nagoya), pp. 63–81. World Scientific Publishing, River Edge (2000)

    Google Scholar 

  29. Kashaev, R.: The Heisenberg double and the pentagon relation. Algebra i Anal. 8(4), 63–74 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Kashaev, R.M., Volkov, A.Yu.: From the tetrahedron equation to universal \(R\)-matrices. Trans. A.M.S. Ser. 2 201, 79–90 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Khoroshkin, S.M., Tolstoy, V.N.: Universal \(R\) matrix for quantized (super) algebras. Commun. Math. Phys. 141, 599–617 (1991)

    Article  MathSciNet  Google Scholar 

  32. Kirillov, A., Reshetikhin, N.: \(q\)-Weyl group and a multiplicative formula for universal \(R\) matrices. Commun. Math. Phys. 134, 421–431 (1990)

    Article  MathSciNet  Google Scholar 

  33. Knutson, A., Tao, T.: The honeycomb model of \(GL_n({\mathbb{C}})\) tensor products I: proof of the saturation conjecture. J. Am. Math. Soc. 12, 1055–1090 (1999)

    Article  Google Scholar 

  34. Le, I.: An approach to cluster structures on moduli of local systems for general groups. arXiv:1606.00961 (2016)

  35. Le, I.: Cluster structures on higher Teichmüller spaces for classical groups. arXiv:1603.03523 (2016)

  36. Levendorskii, S., Soibelman, Ya.: Some applications of the quantum Weyl groups. J. Geom. Phys. 7(2), 241–254 (1990)

    Article  MathSciNet  Google Scholar 

  37. Levendorskii, S., Soibelman, Ya.: Algebras of functions on compact quantum groups, Schubert cells and quantum tori. Commun. Math. Phys. 139(1), 141–170 (1991)

    Article  MathSciNet  Google Scholar 

  38. Ponsot, B., Teschner, J.: Liouville bootstrap via harmonic analysis on a noncompact quantum group. arXiv:hep-th/9911110 (1999)

  39. Ponsot, B., Teschner, J.: Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of \({\cal{U}}_q(\mathfrak{sl}(2,{\mathbb{R}}))\). Commun. Math. Phys. 224, 613–655 (2001)

    Article  Google Scholar 

  40. Rupel, D.: The Feigin tetrahedron. Symmetry Integr. Geom. Methods Appl. 11, 24–30 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Schrader, G., Shapiro, A.: A cluster realization of \({\cal{U}}_q({\mathfrak{sl}}_n)\) from quantum character varieties. arXiv:1607.00271 (2016)

  42. Schrader, G., Shapiro, A.: Continuous tensor categories from quantum groups I: algebraic aspects. arXiv:1708.08107 (2017)

  43. Schrader, G., Shapiro, A.: Quantum groups, quantum tori, and the Grothendieck–Springer resolution. Adv. Math. 321, 431–474 (2017)

    Article  MathSciNet  Google Scholar 

  44. Suzuki, S.: The universal quantum invariant and colored ideal triangulations. arXiv:1612.08262 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan C. H. Ip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ip, I.C.H. Cluster realization of \(\mathcal {U}_q(\mathfrak {g})\) and factorizations of the universal R-matrix. Sel. Math. New Ser. 24, 4461–4553 (2018). https://doi.org/10.1007/s00029-018-0432-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-018-0432-0

Keywords

Mathematics Subject Classification

Navigation