Advertisement

Selecta Mathematica

, Volume 24, Issue 1, pp 21–62 | Cite as

Plane partitions with a “pit”: generating functions and representation theory

  • Mikhail Bershtein
  • Boris Feigin
  • Grigory Merzon
Article

Abstract

We study plane partitions satisfying condition \(a_{n+1,m+1}=0\) (this condition is called “pit”) and asymptotic conditions along three coordinate axes. We find the formulas for generating function of such plane partitions. Such plane partitions label the basis vectors in certain representations of quantum toroidal \(\mathfrak {gl}_1\) algebra, therefore our formulas can be interpreted as the characters of these representations. The resulting formulas resemble formulas for characters of tensor representations of Lie superalgebra \(\mathfrak {gl}_{m|n}\). We discuss representation theoretic interpretation of our formulas using q-deformed W-algebra \(\mathfrak {gl}_{m|n}\).

Mathematics Subject Classification

17B37 81R10 20G42 05E10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M.: Lattice Paths and Determinants Computational Discrete Mathematics, Lecture Notes in Computer Science, vol. 2122, p. 112. Springer, Berlin (2001)Google Scholar
  2. 2.
    Barvinok, A.: Integer Points in Polyhedra. EMS, Zurich (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Beck, M., Haase, C., Sottile, F.: Formulas of Brion, Lawrence, and Varchenko on rational generating functions for cones. Math. Intell. 31(1), 9–17 (2009). [arXiv:math/0506466]MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and representations of Lie superalgebras. Adv. Math. 64, 118–175 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of \(\mathfrak{g}\)-modules, Gelfand, I.M. (ed.), Lie groups and their representations, Proc. Summer School on Group Representations, Janos Bolyai Math. Soc. & Wiley pp. 39–64 (1975)Google Scholar
  6. 6.
    Brion, M.: Points entiers dans les poly‘edres convexes. Ann. Sci. Ecole Norm. Sup. 21(4), 653–663 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve. Duke Math. J. 161(7), 1171–1231 (2012). [arXiv:math/0505148]MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cheng, S.-J., Kwon, J.-H., Lam, N.: A BGG-type resolution for tensor modules over general linear superalgebra. Lett. Math. Phys. 84(1), 75–87 (2008). [arXiv:0801.0914]MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Feigin, B., Feigin, E., Jimbo, M., Miwa, T., Mukhin, E.: Quantum continuous \({\mathfrak{gl}}_{\infty }\): tensor product of Fock modules and \({W}_{n}\) characters. Kyoto J. Math. 51(2), 365–392 (2011). [arXiv:1002.3113]MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Feigin, B., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras. Int. J. Mod. Phys. A7(Supplement 1A), 197–215 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feigin, B., Frenkel, E.: Quantum W-algebras and elliptic algebras. Commun. Math. Phys. 178 3, 653–677 (1996). [arXiv:q-alg/9508009]MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Feigin, B., Fuchs, D.: Representations of the Virasoro algebra. Representations of Lie groups and related topics, 465, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York (1990)Google Scholar
  13. 13.
    Feigin, B., Hoshino, A., Shibahara, J., Shiraishi, J., Yanagida, S.: Kernel function and quantum algebras. RIMS kōkyūroku 1689, 133–152 (2010). [arXiv:1002.2485]Google Scholar
  14. 14.
    Feigin, B., Jimbo, M., Miwa, T., Odesskii, A., Pugai, Y.: Algebra of screening operators for the deformed \(W_n\) algebra. Commun. Math. Phys. 191 (3), 501–541 (1998). [arXiv:q-alg/9702029]CrossRefzbMATHGoogle Scholar
  15. 15.
    Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Quantum toroidal \(\mathfrak{gl}_1\) algebra: plane partitions. Kyoto J. Math. 52(3), 621–659 (2012). [arXiv:1110.5310]MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Quantum toroidal \(\mathfrak{gl} _1\) and Bethe ansatz. J. Phys. A48 24, 244001 (2015). [arXiv:1502.07194]zbMATHGoogle Scholar
  17. 17.
    Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Finite type modules and Bethe Ansatz for quantum toroidal \(\mathfrak{gl}(1)\). Commun. Math. Phys. 356 1, 285–327 (2017). [arXiv:1603.02675]CrossRefzbMATHGoogle Scholar
  18. 18.
    Feigin, B., Makhlin, I.: A combinatorial formula for affine Hall–Littlewood Functions via a weighted Brion theorem. Sel. Math. (2016). [arXiv:1505.04269]
  19. 19.
    Feigin, B., Mutafyan, G.: The quantum toroidal algebra \(\widehat{\widehat{\mathfrak{gl}_1}}\): calculation of characters of some representations as generating functions of plane partitions. Funct. Anal. Appl. 47(1), 50–61 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Feigin, B., Mutafyan, G.: Characters of representations of the quantum toroidal algebra \(\widehat{\widehat{\mathfrak{gl}_1}}\): plane partitions with “stands”. Funct. Anal. Appl. 48(1), 36–48 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Feigin, B.L., Semikhatov, A.M.: \(W_n^{(2)}\) algebras. Nucl. Phys. B 698(3), 409–449 (2004). [arXiv:math/0401164]CrossRefzbMATHGoogle Scholar
  22. 22.
    Gaiotto, D., Rapčák, M.: Vertex Algebras at the Corner. [arXiv:1703.00982]
  23. 23.
    Gessel, I., Viennot, G.: Binomial determinants, paths, and Hook length formulae. Adv. Math. 58, 300–321 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jafferis, D.: Crystals and intersecting branes. [arXiv:hep-th/0607032]
  25. 25.
    Jimbo, M., Lashkevich, M., Miwa, T., Pugai, Y.: Lukyanov’s screening operators for the deformed Virasoro algebra. Phys. Lett. A 229(5), 285–292. [arXiv:hep-th/9607177]
  26. 26.
    Kac, V.G., Roan, S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241(2), 307–342 (2003). [arXiv:math-ph/0302015]MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, I. J. Am. Math. Soc. 6, 905–947 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, II. J. Am. Math. Soc. 6, 949–1011 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, III. J. Am. Math. Soc. 7, 335–381 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras, IV. J. Am. Math. Soc. 7, 383–453 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Khovanskii, A.G., Pukhlikov, A.V.: Finitely additive measures of virtual polyhedra. St. Petersb. Math. J. 4(2), 337–356 (1993)MathSciNetGoogle Scholar
  32. 32.
    Khovanskii, A.G., Pukhlikov, A.V.: The Riemann–Roch theorem for integrals and sums of quasipolynomials on virtual polytopes. St. Petersb. Math. J. 4(4), 789–812 (1993)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Lascoux, A., Pragacz, P.: Ribbon Schur functions. Eur. J. Comb. 9(6), 561–574 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Lawrence, J.: Rational-function-valued valuations on polyhedra. Discrete and computational geometry (New Brunswick, NJ, 1989/1990), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 6, Am. Math. Soc., Providence, RI, pp. 199–208 (1991)Google Scholar
  35. 35.
    Lindström, B.: On the vector representation of induced matroids. Bull. Lond. Math. Soc. 5, 85–90 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Litvinov, A., Spodyneiko, L.: On W algebras commuting with a set of screenings. JHEP, 138, (2016). [arXiv:1609.06271]
  37. 37.
    Lukyanov, S.L., Fateev, V.A.: Additional symmetries and exactly soluble models in two-dimensional conformal field theory. Sov. Sci. Rev. A. Phys. 15, 1–117 (1990)Google Scholar
  38. 38.
    Makhlin, I.: Weyl’s formula as the Brion theorem for Gelfand–Tsetlin polytopes. Funct. Anal. Appl. 50(2), 98–106 (2016). [arXiv:1409.7996]MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Macdonald, I.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)zbMATHGoogle Scholar
  40. 40.
    Moens, E.M., van der Jeugt, J.: A determinantal formula for supersymmetric Schur polynomials. J. Algebraic Comb. 17(3), 283–307 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Okounkov, A., Reshetikhin, N., Vafa, C.: Quantum Calabi–Yau and Classical Crystals. The unity of mathematics, 597–618, Progr. Math., 244, Birkhuser Boston. [arXiv:hep-th/0309208]
  42. 42.
    Sergeev, A.N.: Representations of the Lie superalgebras \(\mathfrak{gl}(n, m)\) and \(Q(n)\) on the space of tensors. Funct. Anal. Appl. 18(1), 70–72 (1984)CrossRefzbMATHGoogle Scholar
  43. 43.
    Shiraishi, J., Kubo, H., Awata, H., Odake, S.: A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions. Lett. Math. Phys. 38, 33 (1996). [arXiv:q-alg/9507034]MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  45. 45.
    Tsymbaliuk, A.: The affine Yangian of \(gl_1\) revisited. Adv. Math. 304, 583–645 (2017). [arXiv:1404.5240]MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Zelevinsky, A.V.: Resolutions, dual pairs, and character formulas. Funct. Anal. Appl. 21(2), 152–154 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mikhail Bershtein
    • 1
    • 2
    • 3
    • 4
    • 5
  • Boris Feigin
    • 3
  • Grigory Merzon
    • 6
  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Skolkovo Institute of Science and TechnologyMoscowRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia
  4. 4.Institute for Information Transmission ProblemsMoscowRussia
  5. 5.Independent University of MoscowMoscowRussia
  6. 6.Moscow Center for Continuous Mathematical EducationMoscowRussia

Personalised recommendations