Selecta Mathematica

, Volume 24, Issue 1, pp 359–402 | Cite as

Witt vectors as a polynomial functor

  • D. Kaledin


For every commutative ring A, one has a functorial commutative ring W(A) of p-typical Witt vectors of A, an iterated extension of A by itself. If A is not commutative, it has been known since the pioneering work of L. Hesselholt that W(A) is only an abelian group, not a ring, and it is an iterated extension of the Hochschild homology group \(HH_0(A)\) by itself. It is natural to expect that this construction generalizes to higher degrees and arbitrary coefficients, so that one can define “Hochschild–Witt homology” \(WHH_*(A,M)\) for any bimodule M over an associative algebra A over a field k. Moreover, if one want the resulting theory to be a trace theory, then it suffices to define it for \(A=k\). This is what we do in this paper, for a perfect field k of positive characteristic p. Namely, we construct a sequence of polynomial functors \(W_m\), \(m \ge 1\) from k-vector spaces to abelian groups, related by restriction maps, we prove their basic properties such as the existence of Frobenius and Verschiebung maps, and we show that \(W_m\) are trace functors. The construction is very simple, and it only depends on elementary properties of finite cyclic groups.

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloch, S.: Algebraic K-theory and crystalline cohomology. Publ. Math. IHES 47, 187–268 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bökstedt, M.: Topological Hochschild homology. Bielefeld (1985) (preprint)Google Scholar
  3. 3.
    Bökstedt, M., Hsiang, W.C., Madsen, I.: The cyclotomic trace and algebraic K-theory of spaces. Invent. Math. 111, 465–540 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cuntz, J., Deninger, C.: Witt vector rings and the relative de Rham Witt complex. arXiv:1410.5249
  5. 5.
    Dress, A.W.M.: Contributions to the theory of induced representations. In: Bass, H. (eds.) Algebraic K-Theory II, Lecture Notes in Math., vol. 342, pp. 183–240 (1973)Google Scholar
  6. 6.
    Feigin, B., Tsygan, B.: Additive \(K\)-theory. In: Lecture Notes in Math., vol. 1289, pp. 97–209 (1987)Google Scholar
  7. 7.
    Grothendieck, A.: Catégories fibrée et descente. SGA I, Exposé VI, SMF (2003)Google Scholar
  8. 8.
    Hesselholt, L.: On the p-typical curves in Quillen’s K-theory. Acta Math. 177, 1–53 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hesselholt, L.: Witt vectors of non-commutative rings and topological cyclic homology. Acta Math. 178, 109–141 (1997); see also an erratum. Acta Math. 195, 55–60 (2005)Google Scholar
  10. 10.
    Hesselholt, L.: Algebraic, K-theory and trace invariants, Proc. ICM, Vol. II. Higher Ed. Press, Beijing, pp. 415–425 (2002)Google Scholar
  11. 11.
    Hesselholt, L., Madsen, I.: On the \(K\)-theory of finite algebras over Witt vectors of perfect fields. Topology 36, 29–101 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Illusie, L.: Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. 12(4), 501–661 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kaledin, D.: Non-commutative Hodge-to-de Rham degeneration via the method of Deligne-Illusie. Pure Appl. Math. Q. 4, 785–875 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kaledin, D.: Cyclotomic complexes. arXiv:1003.2810 (also published in Izv. RAS)
  15. 15.
    Kaledin, D.: Trace theories and localization. Contemp. Math. 643, 227–263 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kaledin, D.: Mackey profunctors. arXiv:1412.3248
  17. 17.
    Kaledin, D.: Spectral sequences for cyclic homology. In: Algebra, Geometry and Physics in the 21st Century (Kontsevich Festschrift). Progress in Math., Birkhäuser, vol. 324, pp. 99–129 (2017)Google Scholar
  18. 18.
    Kaledin, D.: Hochschild–Witt complex. arXiv:1604.01588
  19. 19.
    Loday, J.-L.: Cyclic Homology, 2nd edn. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  20. 20.
    Lindner, H.: A remark on Mackey functors. Manuscr. Math. 18, 273–278 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    May, J.P.: Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, vol. 91. AMS, Providence, RI (1996)Google Scholar
  22. 22.
    Ponto, K.: Fixed point theory and trace for bicategories. Astérisque 333 (2010)Google Scholar
  23. 23.
    Serre, J.-P.: Sur la topologie des variétés algébriques en caractéristique \(p\). Universidad Nacional Autonoma de Mexico and UNESCO, Mexico City, International symposium on algebraic topology, pp. 24–53 (1958)Google Scholar
  24. 24.
    Thevenaz, J., Webb, P.: The structure of Mackey functors. Trans. AMS 347, 1865–1961 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Algebraic Geometry SectionSteklov Mathematics InstituteMoscowRussia
  2. 2.Laboratory of Algebraic GeometryNational Research University Higher School of EconomicsMoscowRussia
  3. 3.Center for Geometry and PhysicsInstitute for Basic Science (IBS)PohangKorea

Personalised recommendations