Selecta Mathematica

, Volume 24, Issue 2, pp 1479–1526 | Cite as

On the wellposedness of the KdV equation on the space of pseudomeasures

  • Thomas Kappeler
  • Jan Molnar


In this paper we prove a wellposedness result of the KdV equation on the space of periodic pseudomeasures, also referred to as the Fourier Lebesgue space \(\mathscr {F}\ell ^{\infty }(\mathbb {T},\mathbb {R})\), where \(\mathscr {F}\ell ^{\infty }(\mathbb {T},\mathbb {R})\) is endowed with the weak* topology. Actually, it holds on any weighted Fourier Lebesgue space \(\mathscr {F}\ell ^{s,\infty }(\mathbb {T},\mathbb {R})\) with \(-1/2 < s \le 0\) and improves on a wellposedness result of Bourgain for small Borel measures as initial data. A key ingredient of the proof is a characterization for a distribution q in the Sobolev space \(H^{-1}(\mathbb {T},\mathbb {R})\) to be in \(\mathscr {F}\ell ^{\infty }(\mathbb {T},\mathbb {R})\) in terms of asymptotic behavior of spectral quantities of the Hill operator \(-\partial _{x}^{2} + q\). In addition, wellposedness results for the KdV equation on the Wiener algebra are proved.


KdV equation Well-posedness Birkhoff coordinates 

Mathematics Subject Classification

Primary 37K10 Secondary 35Q53 35D05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 3(3), 209–262 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bourgain, J.: Periodic Korteweg–de Vries equation with measures as initial data. Sel. Math. (New Ser.) 3(2), 115–159 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Buckmaster, T., Koch, H.: The Korteweg–de Vries equation at H\(^{-1}\) regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(5), 1071–1098 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Christ, M., Colliander, J., Tao, T.: Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Am. J. Math. 125(6), 1235–1293 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness for KdV and modified KdV on R and T. J. Am. Math. Soc. 16(3), 705–749 (2003). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Djakov, P., Mityagin, B.: Instability zones of periodic 1-dimensional Schrödinger and Dirac operators. Russ. Math. Surv. 61, 663–766 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Djakov, P., Mityagin, B.: Spectral gaps of Schrödinger operators with periodic singular potentials. Dyn. Partial Differ. Equ. 6(2), 95–165 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Grébert, B., Kappeler, T.: The Defocusing NLS Equation and Its Normal Form. European Mathematical Society (EMS), Zürich (2014)CrossRefzbMATHGoogle Scholar
  9. 9.
    Guo, Z.: Global well-posedness of Korteweg–de Vries equation in \(H^{-3/4}({\mathbb{R}})\). J. Math. Pures Appl. 91(6), 583–597 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kappeler, T.: Solutions to the Korteweg–de Vries equation with irregular initial profile. Commun. Partial Diff. Equ. 11(9), 927–945 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kappeler, T., Maspero, A., Molnar, J.C., Topalov, P.: On the convexity of the KdV Hamiltonian. Commun. Math. Phys. 346(1), 191–236 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kappeler, T., Mityagin, B.: Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator. SIAM J. Math. Anal. 33(1), 113–152 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kappeler, T., Möhr, C.: Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials. J. Funct. Anal. 186(1), 62–91 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kappeler, T., Möhr, C., Topalov, P.: Birkhoff coordinates for KdV on phase spaces of distributions. Sel. Math. (New Ser.) 11(1), 37–98 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kappeler, T., Molnar, J.C.: On the wellposedness of the KdV/KdV2 equations and their frequency maps. Ann. Inst. H. Poincaré Anal. Non Linéaire (online) (2017). doi: 10.1016/j.anihpc.2017.03.003
  16. 16.
    Kappeler, T., Perry, P., Topalov, P.: The Miura map on the line. Int. Math. Res. Not. 50, 3091–3133 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kappeler, T., Pöschel, J.: KdV and KAM. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kappeler, T., Pöschel, J.: On the periodic KdV equation in weighted Sobolev spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 841–853 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kappeler, T., Schaad, B., Topalov, P.: Qualitative features of periodic solutions of KdV. Commun. Partial Diff. Equ. 38(9), 1626–1673 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kappeler, T., Serier, F., Topalov, P.: On the symplectic phase space of KdV. Proc. Am. Math. Soc. 136(5), 1691–1698 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kappeler, T., Topalov, P.: Riccati representation for elements in \(H^{-1}(\mathbb{T})\) and its applications. Pliska Stud. Math. Bulg. 15, 171–188 (2003)MathSciNetGoogle Scholar
  22. 22.
    Kappeler, T., Topalov, P.: Global wellposedness of KdV in \(H^{-1}(\mathbb{T},\mathbb{R})\). Duke Math. J. 135(2), 327–360 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kenig, C.E., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9(2), 573–603 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kenig, C.E., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106(3), 617–633 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Korotyaev, E.: Characterization of the spectrum of Schrödinger operators with periodic distributions. Int. Math. Res. Not. 2003(37), 2019–2031 (2003)CrossRefzbMATHGoogle Scholar
  26. 26.
    Molinet, L.: A note on ill posedness for the KdV equation. Differ. Integral Equ. 24(7–8), 759–765 (2011)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Molinet, L.: Sharp ill-posedness results for the KdV and mKdV equations on the torus. Adv. Math. 230(4–6), 1895–1930 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pöschel, J.: Hill’s potentials in weighted Sobolev spaces and their spectral gaps. Math. Ann. 349(2), 433–458 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Savchuk, A.M., Shkalikov, A.A.: Sturm–Liouville operators with distribution potentials. Tr. Mosk. Math. Obs. 64, 159–212 (2003)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Savchuk, A.M., Shkalikov, A.A.: Inverse problem for Sturm–Liouville operators with distribution potentials: reconstruction from two spectra. Russ. J. Math. Phys. 12(4), 507–514 (2005)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Tao, T.: Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006)Google Scholar
  32. 32.
    Tsutsumi, Y.: The Cauchy problem for the Korteweg–de Vries equation with measures as initial data. SIAM J. Math. Anal. 20(3), 582–588 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Mathematics, University of ZurichZurichSwitzerland

Personalised recommendations