Selecta Mathematica

, Volume 23, Issue 3, pp 1909–1930 | Cite as

Infinitesimal change of stable basis

  • Eugene Gorsky
  • Andrei NeguțEmail author


The purpose of this note is to study the Maulik–Okounkov K-theoretic stable basis for the Hilbert scheme of points on the plane, which depends on a “slope” \(m \in {\mathbb {R}}\). When \(m = \frac{a}{b}\) is rational, we study the change of stable matrix from slope \(m-\varepsilon \) to \(m+\varepsilon \) for small \(\varepsilon >0\), and conjecture that it is related to the Leclerc–Thibon conjugation in the q-Fock space for \(U_q\widehat{{\mathfrak {gl}}}_b\). This is part of a wide framework of connections involving derived categories of quantized Hilbert schemes, modules for rational Cherednik algebras and Hecke algebras at roots of unity.


Stable and canonical bases Leclerc–Thibon involution Hilbert schemes 

Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aganagic, M., Okounkov, A.: Elliptic stable envelope, arxiv:1604.00423
  2. 2.
    Berest, Y., Etingof, P., Ginzburg, V.: Finite-dimensional representations of rational Cherednik algebras. Int. Math. Res. Not. 19, 1053–1088 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bergeron, F., Garsia, A., Leven, E., Xin, G.: Compositional \((km, kn)\)-shuffle conjectures. Int. Math. Res. Not. (2015). doi: 10.1093/imrn/rnv272
  4. 4.
    Bezrukavikov, R., Etingof, P.: Parabolic induction and restriction functors for rational Cherednik algebras. Selecta Math. (N.S.) 14(3–4), 397–425 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Braden, T., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions I: local and global structure. arXiv:1208.3863
  6. 6.
    Braden, T., Licata, A., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions II: category \({\cal{O}}\) and symplectic duality, arxiv:1407.0964
  7. 7.
    Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14(3), 535–554 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve, I. Duke Math. J. 161(7), 1171–1231 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Etingof, P., Gorsky, E., Losev, I.: Representations of rational Cherednik algebras with minimal support and torus knots. Adv. Math. 277, 124–180 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Feigin, B., Hashizume, K., Hoshino, A., Shiraishi, J., Yanagida, S.: A commutative algebra on degenerate \({{\mathbb{C}}} {\mathbb{P}}^1\) and Macdonald polynomials. J. Math. Phys. 50(9), (2009). doi: 10.1063/1.3192773
  11. 11.
    Feigin, B., Tsymbaliuk, A.: Equivariant K-theory of Hilbert schemes via shuffle algebra. Kyoto J. Math. 51(4), 831–854 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Garsia, A., Haiman, M., Tesler, G.: Explicit Plethystic Formulas for Macdonald \(q,t-\)Kostka coefficients. Sém. Lothar. Combin. 42 (1999)Google Scholar
  13. 13.
    Ginzburg, V., Guay, N., Opdam, E., Rouquier, R.: On the category O for rational Cherednik algebras. Invent. Math. 154(3), 617–651 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gorsky, E., Oblomkov, A., Rasmussen, J., Shende, V.: Torus knots and the rational DAHA. Duke Math. J. 163(14), 2709–2794 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gorsky, E., Negut, A.: Refined knot invariants and Hilbert schemes. J. Math. Pures Appl. (9) 104(3), 403–435 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Haiman, M.: Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Haiman, M.: Vanishing theorems and character formulas for the Hilbert scheme of points in the plane. Invent. Math. 149(2), 371–407 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kashiwara, M., Miwa, T., Stern, E.: Decomposition of \(q\)-deformed Fock spaces. Selecta Math. (N.S.) 1(4), 787–805 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lascoux, A., Leclerc, B., Thibon, J.-Y.: Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys. 38(2), 1041–1068 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Leclerc, B.: Symmetric functions and the Fock space. Symmetric functions 2001: surveys of developments and perspectives, pp. 153–177. NATO Science Series II Mathematical Physical and Chemistry, vol. 74. Kluwer Acad. Publ., Dordrecht (2002)Google Scholar
  21. 21.
    Leclerc, B., Thibon, J.-Y.: Canonical bases of q-deformed Fock spaces. Intern. Math. Res. Not. 9, 447–456 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Leclerc, B., Thibon, J.-Y.: Littlewood-Richardson coefficients and Kazhdan–Lusztig polynomials, Combinatorial methods in representation theory (Kyoto, 1998), pp. 155–220. Advanced Studies in Pure Mathematics, vol. 28, Kinokuniya, Tokyo (2000)Google Scholar
  23. 23.
    Losev, I.: Towards multiplicities for cyclotomic rational Cherednik algebras, arxiv:1207.1299
  24. 24.
    Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology, arxiv:1211.1287
  25. 25.
    Maulik, D., Okounkov, A.: Private communication on the \(K-\)theoretic version of [24]Google Scholar
  26. 26.
    Negu, A.: Moduli of flags of sheaves and their \(K\)-theory. Algebr. Geom. 2, 19–43 (2015). doi: 10.14231/AG-2015-002 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Negu, A.: The shuffle algebra revisited. Int. Math. Res. Not. 22, 6242–6275 (2014)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Negu, A.: The \(\frac{m}{n}-\)Pieri rule. Int. Math. Res. Not. (2015). doi: 10.1093/imrn/rnv110
  29. 29.
    Negu, A.: Quantum algebras and cyclic quiver varieties, Ph.D. thesis, Columbia University (2015)Google Scholar
  30. 30.
    Okounkov, A., Smirnov, A.: Quantum difference equation for Nakajima varieties, arxiv:1602.09007
  31. 31.
    Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the equivariant \(K\)-theory of the Hilbert scheme. Duke Math. J. 162(2), 279–366 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Shan, P.: Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras. Ann. Sci. Éc. Norm. Supér. (4) 44(1), 147–182 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Shan, P., Vasserot, E.: Heisenberg algebras and rational double affine Hecke algebras. J. Am. Math. Soc. 25, 959–1031 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Rouquier, R.: \(q\)-Schur algebras for complex reflection groups. Mosc. Math. J. 8, 119–158 (2008)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Varagnolo, M., Vasserot, E.: On the decomposition matrices of the quantized Schur algebra. Duke Math. J. 100(2), 267–297 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of MathematicsUC DavisDavisUSA
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Mathematics DepartmentMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Simion Stoilow Institute of MathematicsBucharestRomania

Personalised recommendations