Selecta Mathematica

, Volume 23, Issue 3, pp 2029–2070 | Cite as

Dual Hodge decompositions and derived Poisson brackets

  • Yuri BerestEmail author
  • Ajay C. Ramadoss
  • Yining Zhang


We study general properties of Hodge-type decompositions of cyclic and Hochschild homology of universal enveloping algebras of (DG) Lie algebras. Our construction generalizes the operadic construction of cyclic homology of Lie algebras due to Getzler and Kapranov. We give a topological interpretation of such Lie Hodge decompositions in terms of \(S^1\)-equivariant homology of the free loop space of a simply connected topological space. We prove that the canonical derived Poisson structure on a universal enveloping algebra arising from a cyclic pairing on the Koszul dual coalgebra preserves the Hodge filtration on cyclic homology. As an application, we show that the Chas–Sullivan Lie algebra of any simply connected closed manifold carries a natural Hodge filtration. We conjecture that the Chas–Sullivan Lie algebra is actually graded, i.e. the string topology bracket preserves the Hodge decomposition.

Mathematics Subject Classification

19D55 55P50 16E40 55P62 18G55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berest, Y., Chen, X., Eshmatov, F., Ramadoss, A.: Noncommutative Poisson structures, derived representation schemes and Calabi–Yau algebras. Contemp. Math. 583, 219–246 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berest, Y., Felder, G., Patotski, A., Ramadoss, A.C., Willwacher, T.: Representation homology, Lie algebra cohomology and the derived Harish–Chandra homomorphism. arXiv:1410.0043. J. Eur. Math. Soc (to appear)
  3. 3.
    Berest, Y., Felder, G., Patotski, A., Ramadoss, A.C., Willwacher, T.: Chern–Simons forms and higher character maps of Lie representations. Int. Math. Res. Not. 2017(1), 158–212 (2017)Google Scholar
  4. 4.
    Berest, Y., Khachatryan, G., Ramadoss, A.: Derived representation schemes and cyclic homology. Adv. Math. 245, 625–689 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berest, Y., Ramadoss, A.: Stable representation homology and Koszul duality. J. Reine Angew. Math. 715, 143–187 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bocklandt, R., Le Bruyn, L.: Necklace Lie algebras and noncommutative symplectic geometry. Math. Z. 240(1), 141–167 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Burghelea, D., Vigué-Poirrier, M.: Cyclic homology of commutative algebras I. Lecture Notes in Math, vol. 1318. Springer, Berlin, pp. 51–72 (1988)Google Scholar
  8. 8.
    Burghelea, D., Fiedorowicz, Z., Gajda, W.: Adams operations in Hochschild and cyclic homology of de Rham algebra and free loop spaces. K-Theory 4, 269–287 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chas, M., Sullivan, D.: Closed string operators in topology leading to Lie bialgebras and higher string algebra in The Legacy of Niels Henrik Abel, pp. 771–784. Springer, Berlin (2004)zbMATHGoogle Scholar
  10. 10.
    Chen, X., Eshmatov, F., Gan, W.-L.: Quantization of the Lie bialgebra of string topology. Comm. Math. Phys. 301, 37–53 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, X., Eshmatov, A., Eshmatov, F., Yang, S.: The derived non-commutative Poisson bracket on Koszul Calabi–Yau algebras. arXiv:1504.02885. J. Noncommut. Geom. (to appear)
  12. 12.
    Crawley-Boevey, W.: Poisson structures on moduli spaces of representations. J. Algebra 325, 205–215 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \({{\rm Gal}}(\overline{\mathbb{Q}}/{\mathbb{Q}})\). Leningrad Math. J. 2, 829–860 (1991)MathSciNetGoogle Scholar
  14. 14.
    Dwyer, W., Spalinski, J.: Homotopy theories and model categories. In: Handbook of Algebraic Topology, North-Holland, Amsterdam, pp. 73–126 (1995)Google Scholar
  15. 15.
    Dwyer, W., Hirschhorn, P., Kan, D., Smith, J.: Homotopy Limit Functors on Model Categories and Homotopical Categories, Mathematical Surveys and Monographs 113. AMS, Providence, RI (2004)Google Scholar
  16. 16.
    Felix, Y., Halperin, S., Thomas, J.-C.: Rational Homotopy Theory, Graduate Texts in Mathematics 205. Springer-Verlag, New York (2001)CrossRefGoogle Scholar
  17. 17.
    Felix, Y., Thomas, J.-C.: Rational BV-algebra in string topology. Bull. Soc. Math. France 136, 311–327 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Feigin, B., Tsygan, B.: Additive K-Theory and crystalline cohomology. Funct. Anal. Appl. 19(2), 124–132 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gerstenhaber, M., Schack, S.D.: A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra 48, 229–247 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Getzler, E., Kapranov, M.: Cyclic operads and cyclic homology, Geometry, topology and physics, 167–201, Conf. Proc. Lecture Notes Geom. Topology, IV, Intl. Press, Cambridge (1995)Google Scholar
  21. 21.
    Ginzburg, V.: Noncommutative symplectic geometry, quiver varieties and operads. Math. Res. Lett. 8, 377–400 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Goodwillie, T.: Cyclic homology, derivations, and the free loopspace. Topology 24, 187–215 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Jones, J.D.S.: Cyclic homology and equivariant homology. Invent. Math. 87, 403–423 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jones, J.D.S., McCleary, J.: Hochschild homology, cyclic homology, and the cobar construction, London Math. Soc. Lecture Note Ser., 175, Cambridge Univ. Press, Cambridge, pp. 53–65 (1992)Google Scholar
  25. 25.
    Kassel, C.: L’homologie cyclique des algèbres enveloppantes. Invent. Math. 91, 221–251 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kontsevich, M.: Formal noncommutative symplectic geometry, The Gelfand Mathematical Seminars 1990–1992, Birkhäuser Boston, MA, pp. 183–182 (1993)Google Scholar
  27. 27.
    Lambrechts, P., Stanley, D.: Poincaré duality and commutative differential graded algebras. Ann. Sci. École Norm. Sup. (4) 41(4), 497–511 (2008)CrossRefzbMATHGoogle Scholar
  28. 28.
    Loday, J.-L.: Cyclic Homology. Grundl. Math. Wiss. 301, 2nd Edition, Springer-Verlag, Berlin, (1998)Google Scholar
  29. 29.
    Loday, J.-L.: Opérations sur l’homologie cyclique des algèbres commutatives. Invent. Math. 96(1), 205–230 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Loday, J.-L.: Série de Hausdorff, idempotents Eulériens et algèbres de Hopf. Expo. Math. 12, 165–178 (1994)zbMATHGoogle Scholar
  31. 31.
    Majewski, M.: A proof of the Baues–Lemaire conjecture in rational homotopy theory. Rend. Circ. Mat. Palermo Suppl. 30, 113–123 (1993)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Quillen, D.: Homotopical Algebra. Lecture Notes in Math, vol. 43. Springer-Verlag, Berlin (1967)Google Scholar
  33. 33.
    Quillen, D.: Rational homotopy theory. Ann. Math. 90, 205–295 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Quillen, D.: Algebra cochains and cyclic homology. Inst. Hautes Etudes Sci. Publ. Math. 68, 139–174 (1989)CrossRefzbMATHGoogle Scholar
  35. 35.
    Van den Bergh, M.: Double Poisson algebras. Trans. AMS 360, 5711–5769 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Vigué-Poirrier, M.: Décompositions de l’homologie cyclique des algèbres différentielles graduées commutatives. K-theory 4, 399–410 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhang, Y.: Cyclic pairings and noncommutative Poisson structures. Thesis in preparationGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Department of MathematicsCornell UniversityIthacaUSA
  2. 2.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations